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Preface to the first edition

Turbulence is a dangerous topic which is often at the origin of serious
fights in the scientific meetings devoted to it_sigée it represents extremely
different points of view, all of which have in common their complexity,
as well as an inability to solve the problem. It is even difficult to agree
on what exactly is the problem to be solved. .

Extremely schematically, two opposing points of view have been
advocated during these last ten yeafs:l:(;_he\ first one is “statistical”, and
tries to model the evolution of averaged quantities of the flow. This com-
munity, which has followed the glorious trail of Taylor and Kolmogorov,
believes in the phenomenology of cascades, and strongly disputes the
possibility of any coherence or order associated tg turbulence.

On the other bank of the river stands the “coherence among chaos”
community, which considers turbulence from a purely deterministic po-
int of view, by studying either the behaviour of dynamical systems, or
the stability of flows in various situations. To this community are also
associated the experimentalists who seek to identify coherent structures
in shear flows. . :

My personal experience in turbulence was acquired in the first group
since I spent several years studying the stochastic models of turbulence,
applied to various situations such as helical or two-dimensional turbu-
lence and turbulent diffusion. These techniques were certainly not the
ultimate solution to the problem, but they allowed me to get acquainted
with various disciplines such as astrophysics, meteorology, oceanography
and aeronautics, which were all, for different reasons, interested in tur-
bulence. It is certainly true that I discovered the fascination of Fluid
Dynamics through the somewhat abstract studies of turbulence.

This monograph is then an attempt to reconcile the statistical point
of view and the basic concepts of fluid mechanics which determine the
evolution of flows arising in the various fields envisaged above. It is true
that these basic principles, accompanied by the predictions of the insta-
bility theory, give valuable information on the behaviour of turbulence

vii



“‘and of the structures which compose it. But a statistical analysis of
- these structures can, at the same time, supply information about strong
" non-linear energy transfers within the ﬂow A
I'have tried to present here a synthesis between two graduate courses
» given in Grenoble during these last few years, namely a “Turbulence”
couyse and a “Geophysical Fluid Dynamies” course. I would like to thank
my colleagues of the Ecole Nationale d’'Hydraulique et Mécanique and
Université Scientifique et Médicale de Grenoble, who offered me the op-
portunity of givingthese two courses. The students who attended these
classes were, through their questions and remarks, of great help. I took
advantage of a sabbatical year spent at the Department of Aerospace
Engineering of the University of Southern California to write the first
draft of this monograph: this was rendered possible by the generous
hospitality of John Laufer and his collaborators. Finally, I am grateful
to numerous friends around the world who encouraged me to undertake
“this work.

I am greatly indebted to Frances Métais who corrected the English
style of the manuscript. I am uniquely responsible for the remaining
mistakes, due to last minute modifications. I ask for the indulgence of the
English speaking reader, thinking that he might not have been delighted
by a text written in perfect French. I hope also that this monograph will
help the diffusion of some French contributions to turbulence research.

Ms Van Thai was of great help for the drawings. I am also ex-
tremely grateful to Jean-Pierre Chollet, Yves Gagne and Olivier Métais
for their contribution to the contents of the book and their help during
its achievement, and to Sherwin Maslowe who edited several Chapters.

This book was written using the TEX system. This would not
have been possible without the constant help of Evelyne Tournier, of
Grenoble Applied Mathematics Institute, and of Claude Goutorbe, of
the University computing center.

Finally I thank Martinus Nijhoff Publishers for offering me the pos-
sibility of presenting these ideas.

Grenoble, October 1986 ; Marcel Lesieur



Foreword to the second edition

Four years seems to be a good period of time to assess one’s old
points of view in such rapidly evolving field as Turbulence and Fluid
Mechanics. The new possibilities offered by direct-numerical simulations
have provided a lot of information on vortex dynamics, ccherent struc-
tures and transition, compressible or rotating flows. The third chapter
now gives a basic presentation of the linear-instability theory applied
to shear or thermally unstable flows. A substantial part of the phe-
nomenology in Chapter VI is devoted to mixing-length theory applied
to turbulent shear flows. Concerning the stochastic models, it seemed
necessary to include more information on the D.I.A. and R.N.G. theo-
ries. New calculations and experiments on stratified or shear flows have
been incorporated, with emphasis put on the three-dimensional struc-
tures topology. Recent results on the intermittency of isotropic turbu-
lence, and on passive scalar diffusion are also included. Finally, I rewrote
Chapter XII on large-eddy simulation in order to make it more general
and accessible to graduate students. This is the general point of view
which has been my guideline during the write up for this second edition.

All this makes for a much more substaatial book. I hope the original
spirit of the first edition hasnot been lost, but I think it has resisted well
to my attacks. Particular thanks are extended to Pierre Comte and the
graduate students of our group for their important visual contribution
which illustrates so well coherent structures aid transition. Many thanks
also to Olivier Métais who contributed greatly to certain of the new
numerical results shown here, and for his permanent and total support
and interest. Jim Riley was unlucky enough to spend his sabbatical with
us in Grenoble during these last few months, and influenced many of my
conclusions, while pretending to correct the language of a few chapters.
Finally, I am indebted to all the sponsoring agencies and companies who
showed a continuous interest during all these years in the development
of fundamental and numerical research on Turbulence in Grenoble.

Grenoble, June 1990 Marcel Lesieur
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Chapter I

® -INTRODUCTION TO TURBULENCE
IN FLUID MECHANICS

¥

1 - Is it possible to define turbulence?

Everyday life gives us an intuitive knowledge of turbulence in fluids:
the smoke of a cigarette or over a fire exhibits a disordered behaviour
characteristic of the motion of the air which transports it. The wind
1 subject to abrupt changes in direction and velocity, which may have
d:amatic consequences for the seafarer or the hang-glider. During air
travel, one often hears the word turbulence generally associated with
the fastening of seat-belts. Turbulence is also mentioned to describe the
flow of a stream, and in a river it has important consequences concer-
ning the sediment transport and the motion of the bed. The rapid flow
of any fluid passing an obstacle or an airfoil creates turbulence in the
boundary layers and develops a turbulent wake which will generally in-
crease the drag exerted by the flow on the obstacle (and measured by the
famous C; coefficient): so turbulence has to be avoided in order to ob-
tain better aerodynamic performance for cars or planes. The majority of
atmospheric or oceanic currents cannot be predicted accurately and fall
into the category of turbulent flows; even in the large planetary scales.
Small-scale turbulence in the atmosphere can be an obstacle towards the
accuracy of astronomic observations, and observatory locations have to
be chosen in consequence. The atmospheres of planets such as Jupiter
and Saturn, the solar atmosphere or the Earth’s outer core are turbulent.
Galaxies look strikingly like the eddies which are observed in turbulent
flows such as the mixing layer between two flows of different velocity,
and are, in a manner of speaking, the eddies of a turbulent universe.
Turbulence is also produced in the Earth’s outer magnetosphere, due to
the development of instabilities caused by the interaction of the solar -



2 Turbulence in fluids

wind with the magnetosphere. Numerous other examples of turbulent
flows arise in aeronautics, hydraulics, nuclear and chemical engineering,
oceanography, meteorology, astrophysics and internal geophysics.

It can be said that a turbulent flow is a flow which is disordered in
time and space. But this, of course, is not a precise mathematical defi-
nition. The flows one calls “turbulent” may possess fairly different dy-
namics, may be three-dimensional or sometimes quasi-two-dimensional,
may exhibit well organized structures or otherwise. A common property
which is required of them is that they should be able to mix trans-
ported quantities much more rapidly than if only molecular diffusion
processes were involved. It is this latter property which is certainly the
more important for people interested in turbulence because of its prac-
tical applications: the engineer, for instance, is mainly concerned with
the knowledge of turbulent heat diffusion coefficients, or the turbulent
drag (depending on turbulent momentum diffusion in the flow). The
following definition of turbulence can thus be tentatively proposed and
- may contribute to avoiding the somewhat semantic discussions on this
matter:

- a) Firstly, a turbulent flow must be unpredictable, in the sense
that a small uncertainty as to its knowledge at a given initial time will
amplify so as to render impossible a precise deterministic prediction of
its evolution.

- b) Secondly, it has to satisfy the increased mixing property defined
above. .

- ¢) Thirdly, it must involve a wide range of spatial wave lengths.
Such a definition allows in particular an application of the term “tur-
bulent” to some two-dimensional flows. It also implies that certain non
dimensional parameters characteristic of the flow should be much greater
than one: indeed, let I be a characteristic length associated to the large
energetic eddies of turbulence, and v a characteristic fluctuating velocity;
@ very rough analogy between the mixing processes due to turbulence
and the incoherent random walk allows one to define a turbulent diffusion
coefficient proportional to [ v . As will be seen later on, [ is also called
the integral scale. Thus, if v and k are respectively the molecular dif-
fusion coefficients' of momentum (called below the kinematic molecular
viscosity) and heat (the molecular conductivity), the increased mixing
property for these two transported quantities implies that the two di-
mensionless parameters R; = lv/v and lv/k should be much greater
than one. The first of these parameters is called the Reynolds number,
and the second one the Peclet number. Notice finally that the existence
of a large Reynolds number implies, from the phenomenology developed
in Chapter VI, that the ratio of the largest to the smallest scale may be

! These coefficients will be accurately defined in Chapter II.
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of the order of R‘;’ /4 | In this respect, the property b) stressed above
implies c).

A turbulent flow is by nature unstable: a small perturbation will
generally, due to the nonlinearities of the equations of motion, amplify.
The contrary occurs in a “laminar” flow, as can be seen on Figure I-1,
where the streamlines, perturbed by the small obstacle, reform down-
stream. The Reynolds number. of this flow, defined as

" Re = [fluid velocity] X [size of the obstacle |/v

is in this experiment equal to 2.26 10~2. This Reynolds number is diffe-
rent from the turbulent Reynolds number introduced above, but it will
be shown in chapter III that they both characterize the relative impor-
tance of ingrtial forces over viscous forces in the flow. Here the viscous
forces are preponderant and will damp any perturbation, preventing a
turbulent wake from developing.

z

”Figure I-1: Stokes flow of glycerin past a triangular obstacle (picture by S.Tane-

da, Kyushu University; from Lesieur (1982), courtesy S. Taneda and “La Re-
cherche”) )

There is a lot of experimental or numerical evidence showing that turbu-
lent flows are rotational, that is, their vorticity & =V x @ is non zero,
at least in certain regions of space. Therefore, it is interesting to ask
oneself how turbulence does in fact arise in a flow which is irrotational
upstream?. It is obviously due fo the viscosity, since an immediate con-
sequence of Kelvin’s theorem, demonstrated in Chapter II, is that zero-
vorticity ¢

2 for instance, a uniform flow



4 . Turbulence in fluids

Figure I-2: turbulent jet ( picture by J.L. Balint, M. Ayrault and J.P. Schon,
Ecole Centrale de Lyon; from Lesieur (1982), courtesy J.P. Schon and “La
Recherche”)

Figure I-3: turbulence created in a wind tunnel behind a grid. Here turbulence
fills the whole apparatus, and a localized source of smoke has been placed on
the grid to visualize the development of turbulence (picture by J.L. Balint, M.
Ayrault and J.P. Schon, Ecole Centrale de Lyon; from Lesieur (1982), courtesy
“La Recherche”)

,‘

is conserved following the motion in a perfect fluid®: the presence of

3 The perfect fluid is an approximation of the flow where molecular
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Figure I-4: turbulence in a mixing layer (Brown and Roshko, 1974). In I-4a, the
Reynolds number (based on the velocity difference and the width of the layer

at a given downstream position) is twice Figure I-4b’s (courtesy A.Roshko and
J. Fluid Mech.)

boundaries or obstacles imposes a zero-velocity condition which produces
vorticity. Production of vorticity will then be increased, due to the
vortex filaments stretching mechanism to be described later, to such
a point that the flow will generally become turbulent in the rotational
regions. In what is called grid turbulence for instance, which is produced
in the laboratory by letting a flow go through a fixed grid, the rotational
~ “vortex streets” behind the grid rods interact together and degenerate
into turbulence. Notice that the same effect would be obtained by pulling
a grid through a fluid initially at rest. In some situations, the vorticity is
created in the interior of the flow itself through some external forcing or
rotational-initial conditions (as in the example of the temporal mixing
layer presented later on).

viscous effects are ignored.




