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Nonlinear Digital Filters



Preface

Digital filters may be one of the most important building blocks in electrical
and electronic engineering. They are widely employed in signal processing,
communications, control, circuits design, electrical engineering and biomedi-
cal engineering communities. However, as digital filters are linear time invariant
systems, any nonlinear behaviors occur in digital filters should be avoided. The
first observed nonlinear phenomenon was the limit cycle behavior discovered
in 1965 by implementing a digital filter via a finite state machine. Since then,
engineers have tried to avoid the occurrence of the limit cycle behavior. In 1988,
L. O. Chua and T. Lin (Chaos in Digital Filters, IEEE Transactions on Circuits
and Systems, Vol. 35, no. 6, pp. 648-658) observed that besides the occurrence
of the limit cycle behavior, digital filter may exhibit fractal behaviors if imple-
mented via the two’s complement arithmetic. This observation implies that
digital filters associated with nonlinearities may exhibit chaotic behaviors and
this property may be utilized in some applications. While avoiding the occur-
rence of nonlinear behaviors, engineers began investigating the applications of
digital filters with nonlinearities and found that many applications — such as
computer cryptography — secure communications, etc. Hence, the subject of
nonlinear digital filters plays an increasingly important role in electrical and
electronic engineering.

However, most nonlinearities associated with digital filters are discontinuous.
For examples, quantization, saturation and two’s complement arithmetic, all
involve discontinuous nonlinear function. The analysis of systems with dis-
continuous nonlinearities is difficult and not many existing techniques can be
applied for the analysis of these systems. Hence, the objective of this book is
to introduce techniques for the analysis of digital filters with various nonlin-
earities as well as to explore applications using digital filters associated with
nonlinearities. From Chapter 3 through to Chapter 9, techniques for the anal-
ysis of digital filters associated with various nonlinearities will be introduced.
In Chapter 10, application of digital filters associated with nonlinearities is
explored.

I believe that this book would be very useful for those engineers who deal with
nonlinearities of digital filters. Also, it starts from very simple and fundamental

techniques (initially introduced in first or second year courses) and is suitable
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for both the third year undergraduate and postgraduate student. In order to
improve the readability of this book, examples are presented in each section
or subsection and these examples directly illustrate the main concepts found in
that section or subsection.

Wing-Kuen Ling



In addition to the material covered in the text, Matlab
source codes for the figures can be found on the text-
book website: http://books.elsevier.com/companions/
798123725363.
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INTRODUCTION

WHY ARE DIGITAL FILTERS ASSOCIATED WITH
NONLINEARITIES?

Nonlinearities are associated with digital filters mainly for implementation
reasons and are tailor-made for many applications.

Nonlinearities due to implementation reasons

The most common nonlinearities associated with digital filters due to implemen-
tation reasons are quantization, saturation and two’s complement. Quantization
occurs because of the finite word length effects. Saturation occurs because of a
constraint being imposed on the maximum bound of signals. Two’s complement
operation occurs because of the overflow of signals to their sign bits. Although
most computers these days are more than 64 bits—and floating point arithmetic
is employed for the implementation—the cost of using computers to implement
a simple digital filter is very high. Thus, many simple digital filters are still
implemented using very simple circuits or microcontrollers because of their
low cost. In these situations, only 8, or even lower, bits fixed point arithmetic
are employed for the implementation. As a result, effects due to the quantiza-
tion, saturation and two’s complement would be significant. Hence, the analysis
and design of digital filters under these nonlinearities are important.

Quantization

Quantization is a nonlinear map that partitions the whole space and represents
all of the values in each subspace by a single value. For example, for real
input signals, if the input to the quantizer is nonnegative, then the output of
the quantizer is represented by the value ‘1°, and ‘-1’ for other values. In this
example, the set of real numbers is partitioned into two subsets, nonnegative and
negative. ‘1’ and ‘-1 are used for the representation of all values in these two
subsets. It is worth noting that quantization is a noninvertible map. Hence, once
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Figure 1.1 Input output relationships of 4 bit (a) Lloyd Max quantizer with Gaussian input statistics,
(b) 1+ law quantizer with 2 = 100 and (c) uniform quantizer.

a quantization is applied, information is lost and error would be introduced. As
a result, one of the most important issues in quantization is to minimize the
quantization error.

Quantization can be classified as uniform quantization and nonuniform quanti-
zation. Uniform quantization partitions the whole space in a uniform manner,
and vice versa for the nonuniform quantization. The most common nonuniform
quantizers are the Lloyd Max quantizer and the 4 law quantizer, as shown in
Figure 1.1a and 1.1b, respectively. It can be seen from this figure that the quan-
tization step sizes are unevenly distributed, while that of the uniform quantizer
shown in Figure 1.1c is evenly distributed. Another type of classification of
quantization is based on the number of subspaces that are partitioned. For an
N bit quantization, the whole space can be partitioned into 2V subspaces. In
Figure 1.2, three 4-bit quantizers are shown, so there are exactly 16 quantization
levels in each of the quantizers. In general, more bits of the quantizers would
give less quantization error. However, the implementation complexity would be
increased. Quantizers can also be classified as midrise or midthread quantizer.
A midrise quantizer is the one that has a transition at the origin, and vice versa for
the midthread quantizer. Figure 1.2a and 1.2b show the midrise and midthread
quantizers, respectively.

Saturation

Saturation maps the whole space within a bounded subspace. The boundary of
the bounded subspace is characterized by the saturation level. For example, an
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Figure 1.2 Input output relationships of 4 bit (a) midrise quantizer and (b) midthread quantizer.

output of a saturator is 1 and -1 if the input is greater than 1 and smaller than
—1, respectively, and the saturation level of this saturator is 1. Figure 1.3 shows
the input output relationship for this saturator.

Two’s complement

Two’s complement partitions the whole space into periodic subspaces and maps
all subspaces into a single subspace. For example, the set of real numbers is
divided into subsets with periodic 2 and all real values are mapped to values
between —1 and 1 as shown in Figure 1.4.

Nonlinearities due to tailor-made applications

Digital filters are widely used in many applications in signal processing, commu-
nications, control, electrical and biomedical systems. For examples, coding and
compression, denoising, signal enhancement, feature detection and extraction,
amplitude and frequency demodulations, the Hilbert transform, analog-to-
digital conversions, differentiation, accumulation or integration, etc., all involve
digital filters. For some applications, nonlinearities are tailor-made to fit for a
particular purpose.

Denoising application

Figure 1.5b shows an image corrupted by an additive white Gaussian noise.
The mean square error of the noisy image is 1605.8382. Figure 1.5¢ shows a
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Figure 1.5 (a) Original image, (b) image corrupted by an additive white Gaussian noise and
(c) image after lowpass filtering.

lowpass filtered image. The mean square error of the filtered image drops to
167.7439. This example illustrates that lowpass filtering can reduce an additive
white Gaussian noise effectively. Another method for reducing additive white
Gaussian noise is via the wavelet denoising approach. In this approach, signals
are decomposed into different scales via a wavelet transform and wavelet coef-
ficients are set to zero if their magnitudes are smaller than a certain threshold.
It was found that this nonlinear technique can reduce additive white Gaussian
noise effectively.

Coding application

Another application for imposing quantization and saturation intentionally in
signal processing is coding and compression processes. Figure 1.6 shows

0.0367bpp

0.03738bpp 0.05368bpp 0.1443bpp 0.2822bpp

Figure 1.6 Quantized images.
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some compressed images at different bit rates via quantization. After applying
quantization, these images can be transmitted and stored efficiently.

CHALLENGES FOR THE ANALYSIS AND DESIGN OF DIGITAL
FILTERS ASSOCIATED WITH NONLINEARITIES

A nonlinear system is said to be exhibiting:

® a limit cycle behavior if it exhibits a nontrivial periodic output behavior

® a fractal behavior if there is a self-similar geometric pattern exhibited on the
phase plane and this self-similar geometric pattern is repeated at ever smaller
scales to produce irregular shapes and surfaces that cannot be represented by
classical geometry

® an irregular chaotic behavior if it is sensitive to its initial condition, a state
trajectory is dense and consists of dense periodic orbits, but fractal patterns
do not exhibit on the phase plane

® a nonlinear divergent behavior if some state variables tend to infinity but the
corresponding linear part is strictly stable.

Although linear system theories are reasonably well-developed, these theo-
ries cannot be applied when trying to explain the above phenomena. This is
because nonlinear systems are highly dependent on initial conditions and sys-
tem parameters, while these properties are not found in linear systems. For
nonlinear systems, it is useful to characterize the set of initial conditions and
system parameters such that these phenomena would be utilized or avoided.
For example, in audio applications, limit cycles correspond to annoying audio
tones. Hence, it should be avoided. Moreover, nonlinear divergent behaviors
should also be avoided because circuits may be damaged and serious disaster
may occur. In secure communications, fractal and chaotic behaviors may be
preferred because they correspond to a rich frequency spectrum.

Analyzing the stability property of nonlinear systems is also very challenging.
Although Lyapunov stability theorem is powerful, it does not explain limit
cycle, fractal and chaotic behaviors. Also, Lyapunov stability theorem requires
a smooth Lyapunov candidate, which is difficult to find when the nonlinear
function is discontinuous.

In sigma delta modulation, digital filters are usually designed in an unstable
manner in order that a high signal-to-noise ratio can be achieved. In this case, it
is very challenging to design a digital filter such that the stability of the system
is guaranteed and limit cycle behavior is avoided.
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AN OVERVIEW

This book is organized as follows. In Chapter 2, fundamentals of mathemat-
ics, digital signal processing and control theory, used throughout the book,
are reviewed. These include linear algebra, fuzzy theory, sampling theorem,
bifurcation theorem and absolute stability theorem.

From Chapters 3 to 9, digital filters associated with different nonlinearities are
discussed. In Chapter 3, digital filters associated with the quantization nonlin-
earity are covered, and models for the quantization nonlinearity are introduced.
Based on these quantization models, methods for improving the signal-to-noise
ratios are presented. In Chapter 4, digital filters associated with the saturation
nonlinearity are considered. Since oscillations may sometimes occur, the con-
ditions for the occurrence of these oscillations and the stability conditions are
presented, which is useful for both utilizing and avoiding the occurrence of
these oscillations. From Chapters 5 to 8, digital filters associated with the two’s
complement arithmetic are discussed. Chapters 5, 6 and 7 cover autonomous,
step and sinusoidal responses, respectively. In Chapter 8, complex digital fil-
ters associated with two’s complement are considered, and in Chapter 9, digital
filters associated with both the quantization and two’s complement arithmetic
are dealt with.

Finally, in Chapter 10, applications of digital filters associated with nonlineari-
ties are presented; in particular, this chapter examines the applications on secure
communications and computer cryptography.
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REVIEWS

MATHEMATICAL PRELIMINARY

Eigen decomposition

Suppose an n x n matrix A has n linear independent eigenvectors, denoted

as & for I=1,2,...,n and the corresponding eigenvalues are A;. Denote
T=[&1.5,...,&,]and D=diag(A, X2, ..., A,). Then A is diagonalizable and
A=TDT .

By employing the eigen decomposition, it can facilitate the evaluation of a
power of a matrix. For example, if A has n linear independent eigenvectors, then
A =TD/¢T- L. If 3j€({1,2,...,n}suchthat|};| > 1, then some of the elements
in limg— 4 ~ A¥ would be unbounded. Hence, the BIBO stability condition of
a discrete time linear system becomes all eigenvalues confined inside the unit
circle.

Inverse of a map

A map F:X — Y is said to be injective if 3x;,x, €X and y €Y such that
F(x1)=F(x2)=y, then x; =x. A map F:X — Y is said to be surjective
if VyeY, IxeX such that F(x)=y. A map is said to be bijective if it
is both injective and surjective. A map is invertible if and only if it is
bijective.

Fuzzy theory
Fuzzy set
In traditional set theory, an element is either in or not in a set A, that is x € A or

x ¢ A. Thiskind of set is called a crisp set. A fuzzy setis a set that is characterized

8



