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Preface

This book applies the deductive method to programming by affiliating programs
with the abstract mathematical theories that enable them to work. Specification of
these theories, algorithms written in terms of these theories, and theorems and
lemmas describing their properties are presented together. The implementation
of the algorithms in a real programming language is central to the book. While
the specifications, which are addressed to human beings, should, and even must,
combine rigor with appropriate informality, the code, which is addressed to the
computer, must be absolutely precise even while being general.

As with other areas of science and engineering, the appropriate foundation of
programming is the deductive method. It facilitates the decomposition of complex
systems into components with mathematically specified behavior. That, in turn, is
a necessary precondition for designing efficient, reliable, secure, and economical
software.

The book is addressed to those who want a deeper understanding of program-
ming, whether they are full-time software developers, or scientists and engineers for
whom programming is an important part of their professional activity.

The book is intended to be read from beginning to end. Only by reading the
code, proving the lemmas, and doing the exercises can readers gain understanding of
the material. In addition, we suggest several projects, some open-ended. While the
book is terse, a careful reader will eventually see the connections between its parts
and the reasons for our choice of material. Discovering the architectural principles
of the book should be the reader’s goal.

We assume an ability to do elementary algebraic manipulations.! We also assume
familiarity with the basic vocabulary of logic and set theory at the level of undergrad-
uate courses on discrete mathematics; Appendix A summarizes the notation that
we use. We provide definitions of a few concepts of abstract algebra when they are

1. For a refresher on elementary algebra, we recommend Chrystal [1904].



iv Preface

needed to specify algorithms. We assume programming maturity and understanding
of computer architecture? and fundamental algorithms and data structures.’

We chose C++ because it combines powerful abstraction facilities with faithful
representation of the underlying machine.* We use a small subset of the language
and write requirements as structured comments. We hope that readers not already
familiar with C++ are able to follow the book. Appendix B specifies the subset of the
language used in the book.” Wherever there is a difference between mathematical
notation and C++, the typesetting and the context determine whether the mathe-
matical or C++ meaning applies. While many concepts and programs in the book
have parallels in STL (the C++ Standard Template Library), the book departs from
some of the STL design decisions. The book also ignores issues that a real library,
such as STL, has to address: namespaces, visibility, inline directives, and so on.

Chapter 1 describes values, objects, types, procedures, and concepts. Chapters
2-5 describe algorithms on algebraic structures, such as semigroups and totally or-
dered sets. Chapters 6-11 describe algorithms on abstractions of memory. Chapter 12
describes objects containing other objects. The Afterword presents our reflections
on the approach presented by the book.
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Chapter 1
Foundations

S tarting with a brief taxonomy of ideas, we introduce notions of value, object, type,
procedure, and concept that represent different categories of ideas in the computer. A
central notion of the book, regulatity, is introduced and elaborated. When applied to
procedures, regularity means that procedures return equal results for equal arguments.
When applied to types, regularity means that types possess the equality operator and
equality-preserving copy construction and assignment. Regularity enables us to ap-
ply equational reasoning (substituting equals for equals) to transform and optimize
programs.

1.1 Categories of Ideas: Entity, Species, Genus

In order to explain what objects, types, and other foundational computer notions
are, it is useful to give an overview of some categories of ideas that correspond to
these notions.

An abstract entity is an individual thing that is eternal and unchangeable, while
a concrete entity is an individual thing that comes into and out of existence in space
and time. An attribute—a correspondence between a concrete entity and an abstract
entity—describes some property, measurement, or quality of the concrete entity.
Identity, a primitive notion of our perception of reality, determines the sameness
of a thing changing over time. Attributes of a concrete entity can change without
affecting its identity. A snapshot of a concrete entity is a complete collection of
its attributes at a particular point in time. Concrete entities are not only physical
entities but also legal, financial, or political entities. Blue and 13 are examples of
abstract entities, Socrates and the United States of America are examples of concrete
entities. The color of Socrates’ eyes and the number of U.S. states are examples of
attributes.
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An abstract species describes common properties of essentially equivalent ab-
stract entities. Examples of abstract species are natural number and color. A concrete
species describes the set of attributes of essentially equivalent concrete entities. Ex-
amples of concrete species are man and U.S. state.

A functionis arule that associates one or more abstract entities, called arguments,
from corresponding species with an abstract entity, called the resu/t, from another
species. Examples of functions are the successor function, which associates each
natural number with the one that immediately follows it, and the function that
associates with two colors the result of blending them.

An abstract genus describes different abstract species that are similar in some
respect. Examples of abstract genera are number and binaty operator. A concrete
genus describes different concrete species similar in some respect. Examples of
concrete genera are mammal and biped.

An entity belongs to a single species, which provides the rules for its construction
or existence. An entity can belong to several genera, each of which describes certain
properties.

We show later in the chapter that objects and values represent entities, types
represent species, and concepts represent genera.

1.2 Values

Unless we know the interpretation, the only things we see in a computer are Os and
1s. A datum is a finite sequence of Os and 1s.

A value type is a correspondence between a species (abstract or concrete) and
a set of datums. A datum corresponding to a particular entity is called a represen-
tation of the entity; the entity is called the interpretation of the datum. We refer to
a datum together with its interpretation as a value. Examples of values are integers
represented in 32-bit two’s complement big-endian format and rational numbers
represented as a concatenation of two 32-bit sequences, interpreted as integer nu-
merator and denominator, represented as two’s complement big-endian values.

A datum is well formed with respect to a value type if and only if that datum
represents an abstract entity. For example, every sequence of 32 bits is well formed
when interpreted as a two’s-complement integer; an IEEE 754 floating-point NaN
(Not a Number) is not well formed when interpreted as a real number.

A value type is properly partial if its values represent a proper subset of the
abstract entities in the corresponding species; otherwise it is zozal. For example, the
type int is propetly partial, while the type bool is total.

A value type is uniguely represented if and only if at most one value corresponds
to each abstract entity. For example, a type representing a truth value as a byte
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that interprets zero as false and nonzero as true is not uniquely represented. A type
representing an integer as a sign bit and an unsigned magnitude does not provide a
unique representation of zero. A type representing an integer in two’s complement
is uniquely represented.

A value type is ambiguous if and only if a value of the type has more than
one interpretation. The negation of ambiguous is unambiguous. For example, a
type reptresenting a calendar year over a period longer than a single century as two
decimal digits is ambiguous.

Two values of a value type are egual if and only if they represent the same
abstract entity. They are representationally equal if and only if their datums are
identical sequences of Os and 1s.

Lemma 1.1 If a value type is uniquely represented, equality implies
representational equality.

Lemma 1.2 If a value type is not ambiguous, representational equality
implies equality.

If a value type is uniquely represented, we implement equality by testing that
both sequences of Os and 1s are the same. Otherwise we must implement equality in
such a way that preserves its consistency with the interpretations of its arguments.
Nonunique representations are chosen when testing equality is done less frequently
than operations generating new values and when it is possible to make generating
new values faster at the cost of making equality slower. For example, two rational
numbers represented as pairs of integers are equal if they reduce to the same lowest
terms. Two finite sets represented as unsorted sequences are equal if, after sorting
and eliminating duplicates, their corresponding elements are equal.

Sometimes, implementing true bebavioral equality is too expensive or even
impossible, as in the case for a type of encodings of computable functions. In these
cases we must settle for the weaker representational equality: that two values are the
same sequence of Os and 1s.

Computers implement functions on abstract entities as functions on values.
While values reside in memory, a properly implemented function on values does
not depend on particular memory addresses: It implements a mapping from values
to values,

A function defined on a value type is regular if and only if it respects equality:
Substituting an equal value for an argument gives an equal result. Most numetric
functions are regular. An example of a numeric function that is not regular is the
function that returns the numerator of a rational number represented as a pair of
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integers, since 1 = 2, but numerator(}) # numerator(%). Regular functions allow
equational reasoning: substituting equals for equals.

A nonregular function depends on the representation, not just the interpre-
tation, of its argument. When designing the representation for a value type, two
tasks go hand in hand: implementing equality and deciding which functions will be
regular.

1.3 Objects

A memory is a set of words, each with an address and a content. The addresses
are values of a fixed size, called the address length. The contents are values of
another fixed size, called the word length. The content of an address is obtained by
a load operation. The association of a content with an address is changed by a szore
operation. Examples of memories are bytes in main memory and blocks on a disk
drive. .

An object is a representation of a concrete entity as a value in memory. An object
has a state that is a value of some value type. The state of an object is changeable.
Given an object corresponding to a concrete entity, its state corresponds to a snap-
shot of that entity. An object owns a set of resowrces, such as memory words or
records in a file, to hold its state.

While the value of an object is a contiguous sequence of Os and 1s, the re-
sources in which these Os and 1s are stored are not necessarily contiguous. It is
the interpretation that gives unity to an object. For example, two doubles may be
interpreted as a single complex number even if they are not adjacent. The resources
of an object might even be in different memories. This book, however, deals only
with objects residing in a single memory with one address space. Every object has
a unique starting address, from which all its resources can be reached.

An object type is a pattern for storing and modifying values in memory. Cor-
responding to every object type is a value type describing states of objects of that
type. Every object belongs to an object type. An example of an object type is inte-
gers represented in 32-bit two’s complement little-endian format aligned to a 4-byte
address boundary.

Values and objects play complementary roles. Values are unchanging and are
independent of any particular implementation in the computer. Objects are change-
able and have computer-specific implementations. The state of an object at any point
in time can be described by a value; this value could in principle be written down
on paper (making a snapshot) or serialized and sent over a communication link.
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Describing the states of objects in terms of values allows us to abstract from the
particular implementations of the objects when discussing equality. Functional pro-
gramming deals with values; imperative programming deals with objects.

We use values to represent entities. Since values are unchanging, they can rep-
resent abstract entities. Sequences of values can also represent sequences of snap-
shots of concrete entities. Objects hold values representing entities. Since objects
are changeable, they can represent concrete entities by taking on a new value to
represent a change in the entity. Objects can also represent abstract entities: staying
constant or taking on different approximations to the abstract.

We use objects in the computer for the following three reasons.

1. Objects model changeable concrete entities, such as employee records in a
payroll application.

2. Objects provide a powerful way to implement functions on values, such as a
procedure implementing the square root of a floating-point number using an
iterative algorithm.

3. Computers with memory constitute the only available realization of a
universal computational device.

Sotne properties of value types carry through to object types. An object is well
formed if and only if its state is well formed. An object type is properly partial if
and only if its value type is properly partial; otherwise it is tofal. An object type is
uniquely represented if and only if its value type is uniquely represented.

Since concrete entities have identities, objects representing them need a cor-
responding notion of identity. An identity token is a unique value expressing the
identity of an object and is computed from the value of the object and the address
of its resources. Examples of identity tokens are the address of the object, an index
into an array where the object is stored, and an employee number in a personnel
record. Testing equality of identity tokens corresponds to testing identity. During
the lifetime of an application, a particular object could use different identity tokens
as it moves either within a data structure or from one data structure to another.

Two objects of the same type are equal if and only if their states are equal. If
two objects are equal, we say that one is a copy of the other. Making a change to an
object does not affect any copy of it.

This book uses a programming language that has no way to describe values and
value types as separate from objects and object types. So from this point on, when
we refer to types without qualification, we mean object types.
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1.4 Procedures

A procedure is a sequence of instructions that modifies the state of some objects; it
may also construct or destroy objects.

The objects with which a procedure interacts can be divided into four kinds,
corresponding to the intentions of the programmer.

1. Input/output consists of objects passed to/from a procedure directly or
indirectly through its arguments or returned result.

2. Local state consists of objects created, destroyed, and usually modified during
a single invocation of the procedure.

3. Global state consists of objects accessible to this and other procedures across
multiple invocations.

4. Own state consists of objects accessible only to this procedure (and its
affiliated procedures) but shared across multiple invocations.

An object is passed directly if it is passed as an argument or returned as the result
and is passed rndirectly if it is passed via a pointer or pointerlike object. An object is
an input to a procedure if it is read, but not modified, by the procedure. An object is
an output from a procedure if it is written, created, or destroyed by the procedure,
but its initial state is not read by the procedure. An object is an input/output of a
procedure if it is modified as well as read by the procedure.

A computational basis for a type is a finite set of procedures that enable the
construction of any other procedure on the type. A basis is efficient if and only
if any procedure implemented using it is as efficient as an equivalent procedure
written in terms of an alternative basis. For example, a basis for unsigned £-bit
integers providing only zero, equality, and the successor function is not efficient,
since the complexity of addition in terms of successor is exponential in 4.

A basis is expressive if and only if it allows compact and convenient definitions
of procedures on the type. In particular, all the common mathematical operations
need to be provided when they are appropriate. For example, subtraction could be
implemented using negation and addition but should be included in an expressive
basis. Similatly, negation could be implemented using subtraction and zero but
should be included in an expressive basis.

1.5 Regular Types

There is a set of procedures whose inclusion in the computational basis of a type
lets us place objects in data structures and use algorithms to copy objects from
one data structure to another. We call types having such a basis regular, since their



