V. SERDOBOLSKII

MULTIVARIATE STATISTICAL

ANALYSIS

A High-Dimensional Approach




MULTIVARIATE STATISTICAL
ANALYSIS

A High-Dimensional Approach

by

V. Serdobolskii

Department of Applied Mathematics,
Moscow Institute of Electronics and Mathematics,
Moscow, Russia

b d
5
KLUWER ACADEMIC PUBLISHERS
DORDRECHT / BOSTON / LONDON

e i I
I I

E200201012




A C.1.P. Catalogue record for this book is available from the Library of Congress.

ISBN 0-7923-6643-3

Published by Kluwer Academic Publishers,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

Sold and distributed in North, Central and South America
by Kluwer Academic Publishers,
101 Philip Drive, Norwell, MA 02061, U.S.A.

In all other countries, sold and distributed
by Kluwer Academic Publishers,
P.O. Box 322, 3300 AH-Berdrecht, The Netherlands.

\
'

Printed on acid-free paper

All Rights Reserved
© 2000 Kluwer Academic Publishers, Boston
No part of the material protected by this copyright notice may be reproduced or
utilized in any form or by any means, electronic or mechanical,
including photocopying, recording or by any information storage and
retrieval system, without written permission from the copyright owner.

Printed in the Netherlands



MULTIVARIATE STATISTICAL ANALYSIS



THEORY AND DECISION LIBRARY

General Editors: W. Leinfellner (Vienna) and G. Eberlein (Munich)

Series A: Philosophy and Methodology of the Social Sciences
Series B: Mathematical and Statistical Methods

Series C: Game Theory, Mathematical Programming and Operations Research

SERIES B: MATHEMATICAL AND STATISTICAL METHODS

VOLUME 41

Editor: H. J. Skala (Paderborn); Assistant Editor: M. Kraft (Paderborn); Editorial Board.:

J. Aczél (Waterloo, Ont.), G. Bamberg (Augsburg), H. Drygas (Kassel), W. Eichhorn (Karlsruhe), P.
Fishburn (Murray Hill, N.J.), D. Fraser (Toronto), W. Janko (Vienna), P. de Jong (Vancouver), T.
Kariya (Tokyo), M. Machina (La Jolla, Calif.), A. Rapoport (Toronto), M. Richter (Kaiserslautern),
B. K. Sinha (Cattonsville, Md.), D. A. Sprott (Waterloo, Ont.), P. Suppes (Stanford, Calif.), H. Theil
(St. Augustine, Fla.), E. Trillas (Madrid), L. A. Zadeh (Berkeley, Calif.).

Scope: The series focuses on the application of methods and ideas of logic, mathematics and statis-
tics to the social sciences. In particular, formal treatment of social phenomena, the analysis of deci-
sion making, information theory and problems of inference will be central themes of this part of the
library. Besides theoretical results, empirical investigations and the testing of theoretical models of
real world problems will be subjects of interest. In addition to emphasizing interdisciplinary com-
munication, the series will seek to support the rapid dissemination of recent results.



PREFACE

In the last few decades the accumulation of large amounts of in-
formation in numerous applications has stimulated an increased in-
terest in multivariate analysis. Computer technologies allow one to
use multi-dimensional and multi-parametric models successfully. At
the same time, an interest arose in statistical analysis with a de-
ficiency of sample data. Nevertheless, it is difficult to describe the
recent state of affairs in applied multivariate methods as satisfactory.
Unimprovable (dominating) statistical procedures are still unknown
except for a few specific cases. The simplest problem of estimat-
g the mean vector with minimum quadratic risk is unsolved, even
for normal distributions. Commonly used standard linear multivari-
ate procedures based on the inversion of sample covariance matrices
can lead to unstable results or provide no solution in dependence
of data. Programs included in standard statistical packages cannot
process ‘multi-collinear data’ and there are no theoretical recommen-
dations except to ignore a part of the data. The probability of data
degeneration increases with the dimension n, and for n > N, where
N is the sample size, the sample covariance matrix has no inverse.
Thus nearly all conventional linear methods of multivariate statis-
tics prove to be unreliable or even not applicable to high-dimensional
data.

This situation is by no means caused by lack of the necessary ad-
vancing theoretical support of multivariate analysis. The traditional
Fisher approach was developed for classical problems with simple
models and arbitrarily large samples. The principle requirement on
statistical estimators was consistency, i.e.. convergence to true val-
ues for a fixed model, as the sample size increases. Traditionally,
statistical procedures are developed by a substitution of consistent
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estimators into the extremal theoretical solutions (the “plug-in’ pro-
cedure).

However, the component-wise consistency does not provide satis-
factory solutions to the problems of the multivariate analysis. In the
case of a high dimension, the ciunulative effects of estimating a large
number of parameters can lead to a substantial loss of quality and
to the breakdown of multivariate procedures.

It is well known that classical inathematical investigations in mul-
tivariate statistical analysis were reduced to the calculation of some
exact distributions and their functions under the assumption that
the observations are normal. The well developed traditional as-
vinptotic theory of statistics is oriented to one-dimensional and low-
dimensional problems. Its formal extrapolation to multi-dimensional
problems (by replacing scalars by vectors without analyzing specific
effects) enriched the statistics neither with methods, nor with qual-
itatively new theoretical results. One can say that central problems
of the multivariate analysis remain unsolved.

Some essential progress has been achieved after a number of inves-
tigations in 19701974 pioneered by A.N. Kolmogorov. He suggested
a new asymptotic approach differing by a simultaneous increase of
the sample size N and the dimension n of variables so that the ratio
n/N tends to a constant. This constant became a new parameter of
the asymptotic theory. In contrast to the traditional asymptotic ap-
proach in mathematical statistics, this new approach was called the
increasing dimension asymptotics (see the handbooks [1, 2]). The in-
vestigation of terms of the order of magnitude n/N led to the discov-
ery of a series of new specific phenomena in high-dimensional prob-
lems such as accumulation of estimation errors, appearance of finite
biases and multiples, and a certain normalization effect when, un-
der some ‘restricted dependence conditions’, all distributions prove
to be equivalent to normal distributions with respect to funectionals
uniformly depending on variables. In particular, this means that
standard quality functions of multivariate procedures prove to be
approximately distribution-free and that, at last, we obtain a tool
for comparing different versions of procedures.
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An investigation of the leading terms of the increasing dimen-
sion asymptotics led to the construction of a systematic theory of
multivariate analysis characterized by other settings, specific prob-
lems, and results of interest for applications. A statistical problem
in which the dimension of observations is comparable to the sample
size may be called an essentially multivariate problem. The sta-
tistical analysis taking into account finite effects produced by the
estimation of a large number of parameters and related to the solu-
tion of essentially multivariate problems may be called the essentially
multivariate analysis.

The central idea of the investigation of essentially multivariate
effects is to study relations between empirical distribution functions
of true parameters and of their estimators. Limit equations are de-
rived that connect spectral functions of sample covariance matrices
and of true covariance matrices. Such relations proved to be of a
special interest for the essentially multivariate approach, since they
present a device for a regular construction of improved estimators in
different multivariate problems. Using these relations one can first
single out non-random leading parts of quality functionals involved
in multivariate analysis and then construct their consistent estima-
tors. To obtain an improved procedure, it suffices to maximize these
estimators.

The book consists of an Introduction and twelve chapters. The
introduction presents historical aspects and the line of development
of main ideas. In Chapter 1 the reader will recall the fundamentals
of the theory of multivariate analysis in the case when the underlying
distributions are normal. In Chapters 2-11 the results of the original
investigations are presented. These chapters are mostly independent
of each other and written so that they can be read separately.

I'hope that specialists in mathematical statistics will be interested
in this new branch of the theory of statistics and in the new phenom-
ena investigated. The essentially multivariate statistics is different
in its approach, in its special techniques, and in its results of a new

kind.
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Applied statisticians and users of statistical software will be in-
terested in more efficient methods of practical multivariate analysis
that can be developed by using essentially multivariate methods.
In fact, nearly all existing software for applied multivariate analy-
sis 1s now obsolete. The essentially multivariate technique promises
to provide stable, uniformly consistent with respect to the number
of variables, approximately non-improvable methods whose quality
does not depend on distributions.

Students of mathematics obtain a text-book, unique for today,
for studying the recently created theory of more efficient methods
of multivariate analysis. For a new generation of mathematicians
this theory may undoubtedly serve as a reliable basis for their future
success in the science of 21st century.

I would like to express my sincere gratitude to Yurii Vasilievich
Prokhorov for his attention, invariable support of my investigations,
and wise recommendations. Also I am heartily thankful to Victor
Matveevich Bukhshtaber for an enthusiastic attitude and a sugges-
tion to write this book.

V.I. Serdobolski
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INTRODUCTION

Here we briefly outline the history and the development of the
essentially multivariate approach in statistics, and principle features
of its ideas, notions, and achievements.

Let us introduce necessary notations. We consider n-dimensional
populations &; vectors X from & are called observations. We denote
the expectation operator by E, and the function of variance by
cov(+). Let ¥ = cov(x,x) denote the covariance matrix. We consider
samples X = (x,...,xx) from & of size N and use sample means
and matrices

N N
X = j\’r~l Z Xm, Cv = —'NT_I Z (’xm - X)(X’m o i)’[ (1)
m=1 m=1
along with
N
S=NT) xmx, (2)

m=1

(matrices S can have the sense of sample covariance matrices if the
expected values x are known a priori). We denote vectors by semi-
boldface symbols and mark transposed column vectors by the upper
symbol “T". Let the absolute value of a vector denote its length, and
the square of a vector denote the square of its length. We only use
the spectral norms of matrices. The indicator function ind(-) will be

also used in non-ragpdom relations. Let I denote the identity matrix.
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Kolmogorov Asymptotics in
Problems of Multivariate Analysis

The essentially multivariate approach in statistics was developed
first in 1967 1988 in application to the discriminant analysis. First,
let us briefly deseribe the progress achieved before 1980.

The discriminant analysis problem is set as follows.

Suppose two n-dimensional populations are given &, v = 1,2,
and we have samples X; = (x;,..., xn, ) and X3 = (XN, +1,---,XN),
where N = N 4+ Ns, from &, and &,, respectively. A sample dis-
criminant function w(x) = w(x, X;. Xy) 1s constructed and a thresh-
old ¢ 1s fixed. The discrimination rule is of the form w(x) > ¢ against
wi(x) < ¢. Probabilities of errors (conditional under fixed samples)

are
ap =P(w(x) <c|xe &), a; =P(w(x)>c|x€63). (3)

For normal populations &, = N(p,,, ), v = 1,2, with a common
non-degenerate known covariance matrix 3, the minimum of (o, +
2 )/2 1s provided (by virtue of the Neumann Pearson Lemma) with
the Anderson diseriminant function

ll"A\(X) = (/’l = /I-_ry)’l‘S*l (X — (‘/l| -+ /13)/2)

which presents the logarithm of the ratio of normal probability den-
sities. The minimum attained with ¢ = 01s a; = ay = (I)(~\/7/2)
where J = (u; — /12)'1'3—1(/” — p2) 1s the square of the ‘Maha-
lanobis distance’. Standard consistent multivariate procedures are
usually constructed by a replacement of the parameters g,y , and
Y by standard estimators (‘plug-in procedure’). Thus the Fisher
Anderson-Wald sample diseriminant function is constructed

w(x) = (X1 — X2)T C 7 (x — (%1 + %2)/2), (4)

where x; and X, are sample mean vectors and C' is the pooled sample
covariance matrix of the form

Ny N
L R et | E T Eﬁ T
(‘\ Az) {,X,”*X|)(X",—X|) + (Xm—Xz)(Xm—Xz)l
m=1 m=N;+1

(5)
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which is an unbiased estimator of 3. Wald [64] in 1944 proved the
consistency of (4) for a non-degenerate matrix ¥ as Ny — oc and
Ny, — oo.

However, this procedure often fails in applications. The inverse
sample covariance matrix is often ill-conditioned or does not exist in
dependence on data. The degeneration can occur even for n = 2; for
n > N. the inverse matrix C' ' certainly does not exist. Theoretical
recommendations only advise us to reduce the dimension in the hope
of obtaining a stable solution. In applied problems, some heuristic
regularization methods are used. A simple regularization rule is to
add a positive quantity to the diagonal of sample covariance matrices
before the inversion (di Pillo, 1979). Such estimators of the inverse
covariance matrices were called ‘ridge’-estimators [1,2].  However,
until recently the effect of such regularization was not investigated
accurately.

In 1967 A.N. Kolmogorov was interested in the dependence of
the probability of error on the sample sizes. He set and solved the
following problem. Suppose the matrix ¥ is the identity. Let us
consider a simplified diseriminant function

wh(x) = (X1 — %2)7 (x — (X1 + %2)/2)-

This function is distributed normally, and this leads to the error
probabilities of the form ®(—G?%/D), where random G and D are
quadratic functions of sample means and have a non-central \?-
distribution. To single out the leading parts of G and D, A.N. Kol-
mogorov offered to consider not a single n-dimensional problem but
a sequence B = {P,,} of n-dimensional discriminant problems

B, = (61,62, N1, Na, X1, X5, wh(x), ay, (}2)”.
(we do not write out the subseripts n for arguments of 3, ) in which
the observations x are classified with the diseriminant function w(x)
calculated over samples X; and X, of size Ny and N, from popula-
tions & and &,; ay and «y are probabilities of errors calculated for
fixed samples. He assumed that ratios n/N, tend to some constants
Ay, > 0 as n — oo. This asymptotic approach was called the ‘Kol-
mogorov asymptotics’, or the ‘increasing dimension asymptotics’ (see
in [2]). Supposing that &, = N(u,,,I), v =1,2, w(x) = w'(x)
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with ¢ = 0 for each n, and (jt; — p2)? — Jo = 0 as n — oo, he found

that
Jo ) .
vy — P — — (6)
! ( 2V Jo + A1+ Ag

in probability (the limit of «, is identical). This expression is re-

markable by an explicit dependence of the error probability on the
dimension and sample sizes.

In 1976 L.D. Meshalkin [28] deduced the same expression for the
limit probabilities of discrimination error for populations different
from normal ones under an assumption that the populations are ap-
proaching each other in a parametric space (the contiguity assump-
tion) for independent components of the observation vector. In [27]
this result was generalized to a wide class of densities given para-
metrically. In [71] it was shown that the same expression of the limit
errors also remains valid for the dependent normal variables with
some known structure of the dependence, when the inverse sample
covariance matrix of a special structure is used.

In 1970 Yu.N. Blagoveschenskii and A.D. Deev [12] studied the
error probabilities for the standard discriminant procedure using the
increasing dimension asymptotics for two normal populations with
identical nnknown covariance matrices.  A.D. Deev [14] used the
fact that the probabilities of errors (3) coincide with the distribution
functions of w(x) for the argument ¢. He obtained the exact asymp-
totic expansion for the limit of the expected a; = a» with ¢ = 0.
The leading term of this expansion proved to be of a special interest.
Let us cite it.

Suppose that in a sequence P = {PB,,} with the sample dis-
criminant functions (4) the diserimination rule is w(x) > ¢ against
w(x) < c.

THEOREM 1 (corollary of [14]). Let B satisfy the following

conditions:

(A) For cach n the sets are normal N(p,,,3), v = 1,2, with a
common non-degenerate covariance matriz 3.
(B) The limit exists lm (g — pio)? Sy — pp) = J.
n—00
(C) In*B, n/N, — X\, >0, v=1,2,

and the quantity \ & AMA /(A + X)) < 1.



