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Preface

During the latter part of the seventeenth century the new mathe-
matical analysis emerged as the dominating force in mathematics.
It is characterized by the amazingly successful operation with infinite
processes or limits. Two of these processes, differentiation and inte-
gration, became the core of the systematic Differential and Integral
Calculus, often simply called “Calculus,” basic for all of analysis.

The importance of the new discoveries and methods was immediately
felt and caused profound intellectual excitement. Yet, to gain mastery
of the powerful art appeared at first a formidable task, for the avail-
able publications were scanty, unsystematic, and often lacking in
clarity. Thus, it was fortunate indeed for mathematics and science
in general that leaders in the new movement soon recognized the
vital need for writing textbooks aimed at making the subject ac-
cessible to a public much larger than the very small intellectual elite of
the early days. One of the greatest mathematicians of modern times,
Leonard Euler, established in introductory books a firm tradition and
these books of the eighteenth century have remained sources of inspira-
tion until today, even though much progress has been made in the
clarification and simplification of the material.

After Euler, one author after the other adhered to the separation of
differential calculus from integral calculus, thereby obscuring a key
point, the reciprocity between differentiation and integration. Only in
1927 when the first edition of R. Courant’s German Vorlesungen iiber
Differential und Integralrechnung, appeared in the Springer-Verlag
was this separation eliminated and the calculus presented as a unified
subject, :

From that German book and its subsequent editions the present
work originated. With the cooperation of James and Virginia McShaue
a greatly expanded and modified English edition of the **Calculus’ wes
prepared and published by Blackie and Sons in Glasgow since 1934, and
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vi Preface

distributed in the United States in numerous reprintings by Inter-
science-Wiley.

During the years it became apparent that the need of college and uni-
versity instruction in the United States made a rewriting of this work
desirable. Yet, it seemed unwise to tamper with the original versions
which have remained and still are viable.

Instead of trying to remodel the existing work it seemed preferable to
supplement it by an essentially new book in many ways related to the
European originals but more specifically directed at the needs of the
present and future students in the United States. Such a plan became
feasible when Fritz John, who had already greatly helped in the prepara-
tion of the first English edition, agreed to write the new book together
with R. Courant.

While it differs markedly in form and content from the original, it is
animated by the same intention: To lead the student directly to the
heart of the subject and to prepare him for active application of his
knowledge. It avoids the dogmatic style which conceals the motivation
and the roots of the calculus in intuitive reality. To exhibit the interac-
tion between mathematical analysis and its various applications and to
emphasize the role of intuition remains an important aim of this new
book. Somewhat strengthened precision does not, as we hope, inter-
fere with this aim.

Mathematics presented as a closed, linearly ordered, system of truths
without reference to origin and purpose has its charm and satisfies a
philosophical need. But the attitude of introverted science is unsuitable
for students who seek intellectual independence rather than indoctrina-
tion; disregard for applications and intuition leads to isolation and
atrophy of mathematics. It seems extremely important that students
and instructors should be protected from smug purism.

The book is addressed to students on various levels, to mathema-
ticians, scientists, engineers. It does not pretend to make the subject
easy by glossing over difficulties, but rather tries to help the genuinely
interested reader by throwing light on the interconnections and purposes
of the whole.

Instead of obstructing the access to the wealth of facts by lengthy
discussions of a fundamental nature we have sometimes postponed such
discussions to appendices in the various chapters.

Numerous examples and problems are given at the end of various
chapters. Some are challenging, some are even difficult; most of them
supplement the material in the text. In an additional pamphlet more
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problems and exercises of a routine character will be collected, and
moreover, answers or hints for the solutions will be given.

Many colleagues and friends have been helpful. Albert A. Blank
not only greatly contributed incisive and constructive criticism, but he
also played a major role in ordering, augmenting, and sifting of the
problems and exercises, and moreover he assumed the main responsi-
bility for the pamphlet. Alan Solomon helped most unselfishly and
effectively in all phases of the preparation of the book. Thanks is also
due to Charlotte John, Anneli Lax, R. Richtmyer, and other friends,
including James and Virginia McShane.

The first volume is concerned primarily with functions of a single
variable, whereas the second volume will discuss the more ramified
theories of calculus for functions of several variables.

A final remark should be addressed to the student reader. It might
prove frustrating to attempt mastery of the subject by studying such a
book page by page following an even path. Only by selecting shortcuts
first and returning time and again to the same questions and difficulties
can one gradually attain a better understanding from a more elevated
point.

An attempt was made to assist users of the book by marking with an
asterisk some passages which might impede the reader at his first at-
tempt. Also some of the more difficuit problems are marked by an
asterisk.

We hope that the work in the present new form will be useful to the
young generation of scientists. We are aware of many imperfections
and we sincerely invite critical comment which might be helpful for later
improvements.

Richard Courant
Fritz John
June 1965
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