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1
Self-Organization of Inorganic Nanocrystals

Laurence Motte, Alexa Courty, Anh-Tu Ngo, Isabelle Lisiecki, and Marie-Paule Pileni

1.1
Introduction

Self-organization of inorganic nanocrystals opens a new and challenging area in
nanotechnology [1, 2]. We already know that nanomaterials are a new generation
of advanced materials that are expected to exhibit unusual chemical and physical
properties, different from those of either the bulk materials or isolated nanocrys-
tals [3-5]. Engineering of nanophase materials and devices is of great interest in
several domains such as electronics, semiconductors, optics, catalysis, and mag-
netism. During the past decade, nanocrystal research has been focused on two
major properties of finite-size materials: quantum size effects and surface/inter-
face effects [6, 7). A new trend, however, has emerged in the past few years: the
arrangement of the nanocrystals into two- and three-dimensional (2D and 3D)
superlattices.

It was found that inorganic nanocrystals are able to selfassemble in compact
hexagonal networks [8], rings [9, 10], lines [11, 12], stripes [13], tubes [14, 15], col-
umns and labyrinths [16-18], and in large “supra” crystals characterized by a face
centered cubic (fcc) structure [8, 19-23]. The physical properties of such meso-
scopic assemblies differ from those of isolated nanocrystals and from the bulk
phase [1, 2]. Furthermore, the mesoscopic structure itself is also a key parameter
in the control of the physical properties [11, 15, 24-206). In the last five years, col-
lective magnetic, optical, and transport properties were demonstrated [1]. They are
mainly due to dipole-dipole interactions. Intrinsic properties due to self-organiza-
tion also open a new research area, which concerns the physical, chemical, and
mechanical properties of these assemblies. Recently it has been demonstrated
that vibrational coherences of nanocrystals occur when they are organized in fcc
structures [27]. These coherences could explain the change in the transport prop-
erties observed previously with silver nanocrystal self-organizations [28]. Similarly,
a gentle annealing process (below 50 °C) produces large monocrystals like those
observed under ultravacuum by epitaxial growth [29]. This opens a new approach
in the crystal growth mechanism. The nanocrystals can also be used as masks for
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nanolithography and their self-assemblies are then transferred onto a substrate,
which is a completely new technique in this field [30, 31]. The nanocrystal stability
in an annealing process is markedly improved by the self-organization [32]. All
these new approaches make it possible to claim that self-organization of nanocrys-
tals opens a large number of new research areas which involve many of the pre-
sent research domains.

Several groups have obtained 2D and 3D superlattices of various nanomaterials
such as semiconductors (Ag,S, CdSe, PbSe) [8, 19, 33, 34], metals (Ag [20, 21, 27,
29, 35-46], Au [47-62], Pd and Pt [63, 64], Co [11, 13, 22, 23, 25, 26, 32, 65-70]
etc.), and oxides (ferrites) [71, 72]. The most common crystalline structure of these
organizations is hexagonal at 2D and fcc at 3D. The nanocrystal self-organization
is induced by “internal” forces already present in the system. For nanometer-size
particles, these forces are usually van der Waals interactions and capillarity forces.
Furthermore, the 2D and 3D superlattices are most often obtained by evaporation
of a size-selected nanocrystal solution on a substrate. Thus, the particle—particle
and particle—substrate interactions have to be taken into account in their forma-
tion. Moreover, the solvent plays a role in the nanocrystal self-organization
through wetting properties, and it interacts with the substrate and the nanocrys-
tals via the capillarity forces. Other types of mesoscopic nanocrystal organizations
such as rings [9, 10, 73, 74], chains and ribbons [11-15, 24-26, 75-82], columns
and labyrinths [16-18] etc. are obtained by application of “external” forces (tem-
perature gradient, magnetic field, pressure) during the solvent evaporation pro-
cess.

This chapter is divided into four major parts. In the first two parts, the various
forces involved in nanocrystal self-organizations are described. In the third and
fourth parts, the formation of 2D and 3D assemblies in the absence or presence of
external forces, and the parameters controlling the ordering and/or the meso-
scopic shapes of the nanocrystal assemblies are discussed.

1.2
Surface Modification of Nanocrystals and Interparticle Forces in Solution

To produce well-defined 2D and 3D superlattices of nanocrystals, highly stable
materials are needed. Furthermore various forces have to be taken into account.
Let us first list the various parameters involved in the nanocrystal self-assemblies.

Due to van der Waals interactions, particles in the nanometer-size range have a
strong tendency to agglomerate (Fig. 1.1). It is therefore important to develop syn-
thetic methods by which the particles can be stabilized, i.e., where repulsive and
attractive forces between particles balance each other. Mainly electrostatic and
steric forces prevent agglomeration of nanoparticles. Electrostatic stabilization in-
volves creation of an electrical double layer arising from ions adsorbed on the sur-
face and associated counterions that surround the particle. Thus, if the electric po-
tential associated with the double layer is sufficiently high, the Coulombic repul-
sions between the particles prevent their agglomeration (Fig. 1.2 A). Steric stabili-



