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Preface

The subject of this volume is two-fold. First, it gathers typical polarization
patterns occurring in nature. Second, it surveys the polarization-sensitive ani-
mals, the physiological mechanisms and biological functions of polarization
sensitivity as well as the polarization-guided behaviour in animals. The
monograph is prepared for biologists, physicists and meteorologists, espe-
cially for experts of atmospheric optics and animal vision, who wish to under-
stand and reveal the message hidden in polarization patterns of the optical
environment not directly accessible to the human visual system, but measur-
able by polarimetry and perceived by many animals. Our volume is an attempt
to build a bridge between these two physical and biological fields.

In Part I we introduce the reader to the elements of imaging polarimetry.
This technique can be efficiently used, e.g. in atmospheric optics, remote sens-
ing and biology.

In Part II we deal with typical polarization patterns of the natural optical
environment. Sunrise/sunset, clear skies, cloudy skies, moonshine and total
solar eclipses all mean quite different illumination conditions, which also
affect the spatial distribution and strength of celestial polarization. We pre-
sent the polarization patterns of the sky and its unpolarized (neutral) points
under sunlit, moonlit, clear, cloudy and eclipsed conditions as a function of
solar elevation. The polarization pattern of a rainbow is also shown. That part
of the spectrum is derived in which perception of skylight polarization is
optimal under partly cloudy skies. The reader becomes acquainted with the
polarization of the solar corona and can follow how the polarization pattern
of the sky changed during a total solar eclipse. We also treat the polarizational
characteristics of water surfaces, mirages and the underwater light field. We
explain why water insects are not attracted by mirages. Finally, the occurrence
of circularly polarized light in nature is reviewed.

Part 1 is devoted to the description of the visual and behavioural mecha-
nisms indicating how animals perceive and use natural polarization patterns.
Surveying the literature, a detailed compendium of the sensory basis of polar-
ization sensitivity in animals and humans is given. We also present several
case studies of known behavioural patterns determined or influenced by
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polarization sensitivity. It is shown, for instance, how aerial, terrestrial and
aquatic animals use celestial and underwater polarization for orientation. The
role of the reflection-polarization pattern of water surfaces in water detection
by insects is discussed. We illustrate how reflection-polarization patterns of
anthropogeneous origin can deceive water-seeking polarotactic insects. The
natural environment is more or less affected by human civilization and is
overwhelmed by man-made objects, such as crude or waste oil surfaces,
asphalt roads, glass surfaces, or plastic sheets used in agriculture, for instance.
We explain why these surfaces are more attractive to water-seeking polarotac-
tic insects than the water surface itself. We explain why mayflies or dragonflies
lay their eggs en masse on dry asphalt roads or car-bodies. We show how dan-
gerous open-air oil reservoirs can be for polarotactic insects and why oil sur-
faces function as insect traps. Some other possible biological functions of
polarization sensitivity, such as contrast enhancement, intra- or interspecific
visual communication and camouflage breaking are also discussed. Due to
the interference of polarization and colour sensitivity, polarization-induced
false colours could be perceived by polarization- and colour-sensitive visual
systems. We calculate and visualize these false colours by means of a computer
model of butterfly retinae, and investigate their chromatic diversity. Finally, a
common methodological error is discussed, which is frequently committed in
experiments studying animal polarization sensitivity.

Our monograph is in close connection with the treatise about planets, stars
and nebulae studied with photopolarimetry edited by T. Gehrels (1974), the
volume on polarized light in nature by Giinther P. Kénnen (1985), and the
monograph of Kinsell L. Coulson (1988) on polarization and intensity of light
in the atmosphere. When these volumes were published, the technique of
imaging polarimetry was not yet available, thus the polarizational character-
istics of natural optical environments were presented in the form of graphs or
pairs of photographs taken through linear polarizers with two orthogonal
directions of their transmission axes.

Due to imaging polarimetry developed in the last decade, the polarization
patterns are visualized in our volume as high resolution colour/grey-coded
maps of the degree and angle of linear polarization. All colour figures are
placed at the end of the book. They are cited in the text as e.g. — colour
Fig. 1.1.

Considering various kinds of point-source non-imaging polarimeters,
including radar polarimetry, the reader is referred to the monographs of Egan
(1985), Kong (1990), Azzam and Bashara (1992), Boerner et al. (1992) and Col-
lett (1994), for instance. All relevant details of the physics of light polarization
can be found in the text-books of Shurcliff (1962), Clarke and Grainger
(1971), Kliger et al. (1990), Born and Wolf (1999), for example. The early
knowledge about the sensory basis of animal polarization sensitivity and its
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biological functions was reviewed by Karl von Frisch (1967) and Talbot H
Waterman (1981). Riidiger Wehner (1976, 1982, 1983, 1984, 1989, 1994, 20015
also wrote several important reviews and essays about this topic, especially on
honeybees and desert ants. In addition to relying on our own contributions to
the field, we have liberally quoted from the numerous publications of many
other investigators with appropriate references given in each case. While the

bibliography at the end of our book is not complete, it is fairly representative
of the field.

June 2003,  Budapest Gdbor Horvéth
Tiibingen Dezs6 Varju
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1 Polarimetry:
From Point-Source to Imaging Polarimeters

Biologists dealing with polarization sensitivity of animals, or engineers
designing robots using polarization-sensitive imaging detectors, for example,
need a technique to measure the spatial distribution of polarization in the
optical environment. In the 1980s, 1990s and early 2000s, different kinds of
imaging polarimetry have been developed to measure the polarization pat-
terns of objects and natural scenes in a wide field of view. The conventional
non-imaging point-source polarimeters average polarization over an area of a
few degrees only. The conception of “polarization imagery” or “imaging
polarimetry” was introduced by Walraven (1981) to obtain high-resolution
information about the polarized components of the skylight radiance.
Table 1.1 summarizes the most important properties of various imaging
polarimeters.

1.1 Qualitative Demonstration of Linear Polarization
in the Optical Environment

The preserce of linearly polarized light (the most common type of polariza-
tion in nature) in the optical environment can be qualitatively demonstrated
by the use of a linear polarizer. Looking through such a filter and rotating it in
front of our eyes, the change of intensity of light coming from certain direc-
tions may be observed. This intensity change is an unambiguous sign of the
polarization of light. If we take colour photographs from a scene through lin-
ear polarizers with differently oriented transmission axes and compare them,
striking intensity and colour differences may occur in those regions, from
which highly polarized light originates, furthermore the brightness and
colour contrasts may change drastically between different parts of the scene
(— colour Figs. 1.1 and 1.2).

Using triangles cut from a sheet of linearly polarizing filter, Karl von Frisch
(1953) constructed a simple device, the so-called Sternfolie (star foil), with
which the gross distribution of linear polarization of skylight could be
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Table 1.1. The most important properties of some imaging polarimeters designed by
different authors and used for various purposes. Since all instruments contain linearly
polarizing filter(s) of different types, the polarizers are not mentioned and specified in
the column “imaging optics” (10).

Author(s) Type 10 DET FOV RES SR Application
Gerharz (1976) FIP CAMO + PP 12x15° - 535 Polarization
Savart distribution of the
filter + CF circumsolar scatter
field during a total
solar eclipse
Diirst (1982) SEQ CAMO+ PE  8x10° 50x50 600 Polarization pattern
PHO 6NF + of the solar corona
1CF during a total solar
eclipse
Prosch et al. SIM  3lens IT  25x25° 36x36 VIS Ground-and airborne
(1983) VID systems remote sensing of
landscape features
Sivaraman SIM four-lens PE  3x3° 32x32 WL p-pattern of the solar
et al. (1984) PHO CAMO corona during a total
solar eclipse
Fitch et al. POR CAMO PE  30x40° 512x512 VIS Polarization pattern
(1984) SEQ of light reflected from
PHO grain crops during
the heading growth
stage
POLDER SEQ widefield- CCD 114x114° 242x274 443, Space-borne meas-
(1994-1997) VID of-view 670, urement of the polar-
Deschamps optics + 865 izational characteris-
et al. (1994) filter wheel tics of earthlight
Wolff (1993), SEQ CAMO+ CCD 30x40°  165x192 VIS Polarization patterns
Cronin et al, VID 2TNLC (D) of objects and
(1994), SUB 240x320 biotopes
Shashar et al. (v)
(1995a, 1996)
Wolff (1994), SEQ 2CAMO+ CCD 20x20° 165x192 VIS Polarization patterns
Wolff & VID PPBS+ of objects for robot
Andreou (1995) TNLC vision
Wolff & ID  lens PSC - 3x128 VIS Prototype of future
Andreou (1995) SIM  system 2D polarization
PCC camera chips
Povel (1995) SIM telescope+ CCD 0.42’x  288x385 VIS Observation of solar
STO PEMs 0.83 magnetic fields
Pezzaniti & MMI lens system CCD 42x42°  512x512 VIS Polarizational proper-
Chipman (1995) SEQ + retarders IR ties of static optical

+ laser

systems and samples

1 Polarimetry: From Point-Source to Imaging Polarimeters

Table 1.1. (Continued)

Author(s) Type 10 DET FOV RES SR Application
North & Duggin SIM four-lens PE  180°CIR 300x300 VIS Ground-borne meas-
(1997) PHO CAMO+ urement of skylight
spherical polarization
mirror
Voss & Liu SEQ FEL CCD 178°CIR 528x528 VIS Ground-borne meas-
(1997) viD (B) urement of skylight
polarization
Horvdth & POR CAMO CCD 50x40°  736x560 VIS Polarization patterns
Varjui (1997) SEQ of sky, objects and
VID biotopes
Lee (1998) POR CAMO PE  36x24° 550x370 VIS Polarization patterns
SEQ of clear skies
PHO
Horvith & POR CAMO UV 20x15°  736x560 UV+ Polarization patterns
Wehner (1999) SEQ IT VIS of sky, objects and
VID biotopes
Bueno & Artal SEQ CAMO + CCD 1xI1° 60x60 630 Polarizational proper-
(1999), MMI 2TNL + ties of static optical
Bueno {2000) 2 quarter- systems and samples
wave plate (e.g. human eye)
+ laser
Hanlon et al. SIM  3-tube IT  20x30° 512x384 VIS Polarization patterns
(1999) VID CAMO + of moving animals
prismatic
beam-
splitter
Mizera et al. POR CAMO CCD 50x40°  736x560 VIS Polarization patterns
(2001) SEQ of objects and
STE biotopes
vib
Gél et al. POR FEL+ PE 180°CIR 670x670 VIS Ground- and airborne
(2001 ¢) SEQ filter measurements of
PHO wheel polarization patterns
of the atmosphere,
objects and biotopes
Shashar et al. SEQ microscope CCD 5x5° 512x384 VIS Polarization patterns
(2001) VvID of microscopic targets
Horvithetal =~ POR 3FEL PE  180°CIR 670x670 VIS Ground-borne meas-
(2002a) SIM urements of skylight
PHO polarization
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Table 1.1. (Continued)

Author(s) Type IO DET FOV RES SR Application
Pomozi (2002), DPL Laser CCD 256x256 1024x VIS Study of the aniso-
Pomotzi et al. SM  scanning pum 1024 tropic architecture of
(2003), Garab microscope microscopic samples
et al. (2003) and the interaction of
the sample with polar-
ized light
Barter et al. SIM CAMO+ CCD 36x36° 640x VIS Patterns of linear
(2003) VID 4-way 480 circular polarization
beam- of the optical
splitting environment

at 60 Hz frame rate

1D one-dimensional (linear). B binned. CAMO camera optics. CCD charge-coupled
device. CF colour filter. CIR circular. D digital. DET detector. DPLSM differential polar-
ization laser scanning microscopy. FEL fisheye lens. FIP forerunner of imaging
polarimetry. FOV field of view. IR infrared (A > 750 nm). IT imaging tube. MMI Mueller
matrix imaging polarimeter. NF neutral density filter. PCC polarization camera chip. PE
photoemulsion. PEM piezoelastic modulator. PHO photopolarimeter. POR portable. PP
photographic plate. PPBS polarizing plate beam-splitter. PSC polarization-sensitive chip.
RES spatial resolution (pixel x pixel). SEQ sequential. SIM simultaneous. SR spectral
region (nm). STE stereo. STO imaging Stokes polarimeter. SUB submersible. TNLC
twisted-nematic liquid crystal. UV ultraviolet. V video. VID video polarimeter. VIS visi-
ble (400-750 nm). WL white light.

demonstrated (Fig. 1.3). This pioneering instrument was used by Frisch to
investigate qualitatively the degree and angle of polarization of skylight,
which was important to interpret the results of his behavioural experiments
with honeybees.

What could be demonstrated only qualitatively by Frisch (1953) with his
“Sternfolie”, nowadays can already be measured quantitatively by different
kinds of full-sky imaging polarimeters (North and Duggin 1997; Voss and Liu
1997; G4l et al. 2001a,b,c; Pomozi et al. 2001a,b; Horvdth et al. 2002a,b, 2003;
Barta et al. 2003). Figure 1.3 and — colour Figs. 1.4 and 1.5 (see also — colour
Figs. 4.3-4.5) demonstrate well the advance of imaging polarimetry in the last
50 years.
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Fig, 1.3. A Schematic drawing of a sheet of linearly polarizing filter with cut pattern to
construct the “Sternfolie” (“star foil”) used to demonstrate the gross distribution of lin-
ear polarization of skylight by Karl von Frisch (1953, 1967). The orientation of the trans-
mission axis is shown by double-headed arrows. B The geometry of the “Sternfolie”.
C Simple instrument - a “Sternfolie” mounted onto a metal holder in such a way that
both the elevation and azimuth of the viewing direction through the foil can be changed,
- with which Frisch (1953, 1967) investigated qualitatively the polarization of skylight.
D View through the “Sternfolie” in eight different directions in the sky with an angle of
elevation of 45°. (After Frisch 1953).
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1.2 Elements of the Stokes and Mueller Formalism
of Polarization

Polarized light can be decomposed into two components vibrating coherently
(that is, with a constant phase difference) and perpendicularly to each other.
The state of polarization of transversal electromagnetic waves (e.g. light) is
usually described by a four-element vector known as Stokes vector §, first
introduced by Stokes (1852) with the following components:

§ = (I, Q) U)V)7 I= Ir + Ip = I4S + I135 = Irc + IIC’
Q=I-I= I-p-cos(2e)-cos(2ax), U =1, -1, =1p-cos(2¢)sin(2a),
V=1.-1I.=Ip-sin(2¢) (L.Y)

where I is the total intensity of light, I, and I, are the intensities of the light
components polarized totally linearly in a reference plane and perpendicu-
larly to it, I,; and I,;; are the intensities of the components polarized totally
linearly in planes 45 and 135° to the reference plane, I, and I, are the intensi-
ties of the components polarized circularly right- and left-handed, p is the
degree of linear polarization, ¢ is the ellipticity of polarization, and a is the
angle of polarization, which is the angle of the direction of oscillation from a
given plane. Q quantifies the fraction of linear polarization parallel to the ref-
erence plane, U gives the proportion of linear polarization at 45° with respect
to the reference plane, and V quantifies the fraction of right-handed circular
polarization. The degree of polarization P, the degree of linear polarization p,
the angle of polarization « and the ellipticity € can be expressed by the com-
ponents of the Stokes vector as follows (Shurcliff 1962):

P=(Q+U2+V)UL, p=(Q+UYI,  0sBp<l,
o = 0.5-arc tan(U/Q), &£ = 0.5-arc sin[V/(QX+U2+V?2)112], (1.2)

A change in the state of polarization of light produced by an optical system,
ie. a transformation of the Stokes vector S, = (I, Q,, U,, V) of the incident
light into a new Stokes vector § = (I, Q, U, V) by an optical process (e.g. reflec-
tion, refraction, scattering, diffraction, birefringence, optical activity) can be
expressed as a linear transformation in a four-dimensional space:

S=M-5, (1.3)

where M is a four-by-four matrix called “Mueller matrix” with real elements
M; (1,j=0,1,2,3) containing information on all polarizational properties of
light. The 16 elements of the Mueller matrix of a given optical system can be
obtained by 16 measurements with independent combinations of states of
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polarization (degrees and angles of linear and circular polarization) of the
incident light.

1.3 Polarimetry of Circularly Unpolarized Light
by Means of Intensity Detectors

Light in the natural optical environment is usually not circularly polarized.
The few known exceptions are listed and discussed in Chap. 15. Skylight
polarization, for instance, is predominantly linear and the component of cir-
cular polarization of skylight can be neglected (Hannemann and Raschke
1974). Thus, the contribution of the Stokes parameter V characterizing circu-
lar polarization to the total intensity is negligible in comparison with that of
the linearly polarized component. The remaining Stokes vector components I,
Q and U can be determined from three intensity measurements, using a rotat-
ing linear polarizer in front of a radiometer, for instance. If these three mea-
surements occur at angles of orientation B = 0, 60 and 120° of the transmis-
ston axis of a perfect polarizer (with ¢t = 1 and 7 = 0, where ¢ and r are the
transmittances of the polarizer along the transmission axis and perpendicu-
larly to it), for example, and the state of polarization of light is not changed by
other components of the polarimeter, then the transmitted intensities I are
(Prosch et al. 1983):

I(=0°) =1, =I-[1 + p-cos(2a)}/2,
[(B=60°) = I, = [[1 - 0.5-p-cos(2a) + 0.5-p-312 -sin(2a1)}/2,
I(B=120°) = [ ,, = I;{1 - 0.5-p-cos(2a) - 0.5-p-312 sin(2ax)}/2, (1.4)

where I, is the intensity of incident light. The components Q; and U; of the
incident Stokes vector are:

Q = 2(21y - Ty - L,0)/3, U, = =2(150 - Igp)-37V2 (1.5)

Finally, the intensity I, degree of linear polarization p and angle of polariza-
tion a of incident light can be calculated as follows:

L=2(I + L, + 1;0)/3, p=(QX+UNIL, a=0.5arc tan(U/Q,). (1.6)
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1.4 Point-Source, Scanning and Imaging Polarimetry

The major aim of polarimetry is to measure the four components I, Q, U and
V of the Stokes vector §, from which further quantities of the incident light
can be derived, according to Eqn (1.2). These measurements can be done
either by a point-source polarimeter or by an imaging one. The only principal
difference between them is that the former performs measurements in a given
direction representing a very narrow field of view within which the optical
variables I, Q, U and V are averaged, while the latter measures the polarization
simultaneously in many directions in a wide field of view (— colour Fig. 1.4).
A further development of the latter technique is the stereo video polarimetry
(Mizera et al. 2001) which visualizes the polarization patterns in three dimen-
sions (— colour Fig. 1.5). There is an intermediate technique, the scanning
point-source polarimetry between these two extremities. Such a polarimeter
scans a given area of the optical environment and measures sequentially the
polarization in many directions. However, scanning a greater area of the opti-
cal environment with a point-source polarimeter is a troublesome and time-
consuming task. Using imaging polarimetry, the spatial distribution of polar-
ization can be easily and quickly determined.

1.5 Sequential and Simultaneous Polarimetry

If the (at least necessary) three intensity measurements with different orien-
tations of the transmission axis of the polarizer are performed one after the
other, we speak about “sequential polarimetry”. When all these measurements
happen at the same time, it is called “simultaneous polarimetry”. For the lat-
ter at least three separate polarimeters are needed. The advantage of simulta-
neous polarimetry is that temporally changing radiation fields (e.g. light from
cloudy skies with rapidly moving clouds, or skylight after sunset or prior to
sunrise, or measurements from a moving platform) can also be measured
with it, if the time needed is not longer than the characteristic period during
which considerable changes occur in the radiation field. Its disadvantage is
that at least three polarimeters have to be handled simultaneously, which is
not a simple task. Furthermore, such a group of polarimeters is heavy, volu-
minous, its setting up, dismounting and transferring is difficult and time-con-
suming. These disadvantages frequently make the use of simultaneous
polarimetry in the field impossible. The disadvantage of sequential polarime-
try is that temporally changing radiation fields cannot be measured with it. Its
advantage is that only one polarimeter has to be handled, the setting up, dis-
mounting and transferring of which is much easier and quicker.
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1.6 Colour Coding and Visualization of Polarization Patterns

On the basis of the functional similarity between polarization vision and
colour vision, Bernard and Wehner (1977) suggested a hue-saturation-bright-
ness visualization method for partially linearly polarized light. This “compos-
ite visualization” scheme was used by Wolff and collaborators (e.g. Wolff 1993;
Shashar et al. 1995a), for example, who coded the angle of polarization a,
degree of linear polarization p and intensity I of partially linearly polarized
light by the hue, saturation and brightness, respectively. In their polarization
maps, unpolarized light appears achromatic, strongly polarized regions show
up chromatically saturated, and the intensity of light is the brightness regard-
less of colour. The advantage of this visualization lies in its compactness: it
displays the distribution of all three optical parameters (I, p, &) in a single,
false-coloured picture. The disadvantage of this coding is that it is difficult to
decompose, since in a complex false-coloured picture it is not easy to separate
and decode the values of I, p and a from each other. Changes in hue (coding
a) appear to the human visual system more strikingly than changes in satura-
tion (coding p). Furthermore, the perception of the hue-saturation-brightness
scale is very non-linear (Shashar et al. 1995a).

These problems do not occur if the distributions of I, p and « are displayed
in three separate patterns with arbitrary unambiguous colour coding (-
colour Figs. 1.4 and 1.5). This “separate visualization” of the I-, p- and a-pat-
terns is preferred by Horvéth and collaborators (e.g. Horvith and Varji 1997;
Horvédth and Wehner 1999; G4l et al. 2001c; Pomozi et al. 2001b; Berndth et al.
2002, Barta et al. 2003), for instance.

Other authors (e.g. Diirst 1982; Sivaraman et al. 1984) display the I-, p- or a-
patterns measured by imaging polarimetry in the form of the conventional con-
tour plots used frequently in the cartography, for example. Although this “con-
tour plot visualization”is the most traditional, it can hardly reproduce the image
feature of the spatial distribution of polarization, which is the most important
characteristic of the visualization of data gained by imaging polarimetry.

1.7 Field of View of Imaging Polarimetry

The field of view of an imaging polarimeter is limited by that of the imaging
optics used. In the case of common photographic and video cameras, the field
of view of the lens system is about 30-50° (horizontal) x 20-40° (vertical)
depending on the focal length and the aperture (- colour Figs. 1.1, 1.4 and
L.5). This common field of view can be extended e.g. by decreasing the focal
length. A fisheye lens with 8 mm focal length mounted onto a normal photo-
graphic camera is an extremum, ensuring a hemispherical field of view with



