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Preface

Nature frequently uses cellular and porous materials for creating load-carrying and
weight-optimized structures. Thanks to their cellular design, natural materials such
as wood, cork, bones, and honeycombs fulfill structural as well as functional
demands. For a long time, the development of artificial cellular materials has
been aimed at utilizing the outstanding properties of biological materials in tech-
nical applications. As an example, the geometry of honeycombs was identically
converted into aluminum structures which have been used since the 1960s as cores
of lightweight sandwich elements in the aviation and space industries. Nowadays, in
particular, foams made of polymeric materials are widely used in all fields of
technology. For example, Styrofoam™ and hard polyurethane foams are widely
used as packaging materials. Other typical application areas are the fields of heat
and sound absorption. During the last few years, techniques for foaming metals and
metal alloys and for manufacturing novel metallic cellular structures have been
developed. Owing to their specific properties, these cellular materials have consider-
able potential for applications in the future. The combination of specific mechanical
and physical properties distinguishes them from traditional dense metals, and
applications with multifunctional requirements are of special interest in the context
of such cellular metals. Their high stiffness, in conjunction with a very low specific
weight, and their high gas permeability combined with a high thermal conductivity
can be mentioned as examples. Cellular materials comprise a wide range of different
arrangements and forms of cell structures. Metallic foams are being investigated
intensively, and they can be produced with a closed- or open-cell structure. Their
main characteristic is their very low density. The most common foams are made of
aluminum alloys. Quite a regular arrangement of cells is obtained in structures, e.g.
with hollow spheres. A perfect regular structure results from interconnecting net-
works of straight beams; materials of this type are known as lattice block materials.
What all these different cellular materials have in common is that their physical
properties are not only determined by their cell wall material but also significantly by
their microstructure.

Several textbooks cover the topic of cellular materials in general and give an
introduction to the whole range of physical properties and possible applications. The
books by L. J. Gibson and M. F. Ashby (Pergamon Press, 1988), M. F. Ashby et al.

Cellular and Porous Materials: Thermal Properties Simulation and Prediction
Edited by Andreas Ochsner, Graeme E. Murch, and Marcelo J.S. de Lemos
Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-31938-1

X



Xiv

Preface

(Butterworth Heinemann, 2000), and H.-P. Degischer and B. Kriszt (Wiley-VCH,
2002) are recognized as standard works on this topic and give the most comprehen-
sive general overview of cellular and porous materials.

The idea of this book is to cover one of the important physical characteristics, i.e.
thermal properties, in detail from different points of view. This book aims to provide
readers not only with a good understanding of the fundamentals but also with an
awareness of recent advances in properties determination and applications of
cellular and porous materials. The book contains 12 chapters written by experts in
the relevant fields from academia and from major national laboratories/research
institutes. The first part of the book introduces in detail different numerical and
analytical methods in order to characterize and predict the effective thermal proper-
ties. Each of these chapters focuses on a detailed introduction of the theoretical and/
or experimental method(s) which are applied to the characterization of different
materials. The first part of the book introduces aspects relevant even for a non-
specialist, i.e. to provide information which is normally omitted in the scope of
journal publications. Different characterization approaches are presented and
applied to different types of cellular and porous materials in order to reveal a
spectrum for the investigation of effective thermal properties. The second part of
the book addresses various types of applications and specialized topics related to the
context of thermal properties of cellular and porous materials.

The editors wish to thank all the chapter authors for their participation and
cooperation which made this text possible.

Finally, we would like to thank the team at Wiley-VCH, especially Dr. Rainer Miinz
and Dr. Martin Ottmar, for their excellent cooperation during the whole phase of the
project.

January 2008 Andreas Ochsner
Graeme E. Murch
Marecelo J. S. de Lemos
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