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Abstract

In this book by a leading Russian mathematician and full member of
the Russian Academy of Sciences, Igor Rostislavovich Shafarevich, the
elements of algebra as a field of contemporary mathematics are laid out
based on material bordering the school program as closely as possible.

The book can be used as enrichment materials for students in grades
9-12 in both ordinary schools and schools with a deeper study of math-
ematics and the sciences and also as a book for mathematics teachers.



Preface

I wish that algebra would be the Cinderella of our story. In the math-
ematics program in schools, geometry has often been the favorite daugh-
ter. The amount of geometric knowledge studied in schools is approx-
imately equal to the level achieved in ancient Greece and summarized
by Euclid in his Elements (third century B.C.). For a long time, geom-
etry was taught according to Euclid; simplified variants have recently
appeared. In spite of all the changes introduced in geometry cours-
es, geometry retains the influence of Euclid and the inclination of the
grandiose scientific revolution that occurred in Greece. More than once
I have met a person who said, “I didn’t choose math as my profession,
but I'll never forget the beauty of the elegant edifice built in geometry
with its strict deduction of more and more complicated propositions, all
beginning from the very simplest, most obvious statements!”

Unfortunately, I have never heard a similar assessment concerning al-
gebra. Algebra courses in schools comprise a strange mixture of useful
rules, logical judgments, and exercises in using aids such as tables of log-
arithms and pocket calculators. Such a course is closer in spirit to the
brand of mathematics developed in ancient Egypt and Babylon than to
the line of development that appeared in ancient Greece and then con-
tinued from the Renaissance in western Europe. Nevertheless, algebra
is just as fundamental, just as deep, and just as beautiful as geometry.
Moreover, from the standpoint of the modern division of mathemat-
ics into branches, the algebra courses in schools include elements from
several branches: algebra, number theory, combinatorics, and a bit of
probability theory.

The task of this book is to show algebra as a branch of mathematics
based on materials closely bordering the course in schools. The book
does not claim to be a textbook, although it is addressed to students and
teachers. The development presumes a rather small base of knowledge:
operations with integers and fractions, square roots, opening parenthe-
ses and other operations on expressions involving letter symbols, the
properties of inequalities. All these skills are learned by the 9th grade.
The complexity of the mathematical considerations increases somewhat
as we move through the book. To help the reader grasp the material,
simple problems are given to be solved.

The material is grouped into three basic themes—Numbers, Poly-
nomials, and Sets—each of which is developed in several chapters that
alternate with the chapters devoted to the other themes.

Certain matters related to the basic text, although they do not use
more ideas than are already present, are more complicated and require
that the reader keep more facts and definitions in mind. These matters
are placed in supplements to the chapters and are not used in subsequent
chapters.



Vil Preface

For the proofs of assertions given in the book, I chose not the shortest
but the most “understandable.” They are understandable in the sense
that they connect the assertion to be proved with a larger number of con-
cepts and other assertions; they thus clarify the position of the assertion
to be proved within the structure of the presented area of mathemat-
ics. A shorter proof often appears later, sometimes as a problem to be
solved.

At the first acquaintance with mathematics, the history of its devel-
opment usually retreats into second place. Sometimes it even seems
that mathematics was born in the form of a perfected textbook. In fact,
mathematics has arisen as the result of the work of uncounted scholars
throughout many milleniums. To give some attention to that aspect of
mathematics, the dates of the lives of the mathematicians (and physi-
cists) mentioned in the text are listed at the end of the book.

There are quite many formulas. For convenience in referring to them,
they are numbered. If I only give the formula number when referring to
it, then the formula is in the current chapter. For example, if “multiply-
ing equality (16), we obtain ... ” is said in Chap. 2, then the formula
with the number (16) in Chap. 2 is meant. If a formula in a different
chapter is intended, then the number of the chapter is also given, for
example, “using formula (12) in Chap. 1.” To help find the necessary
chapter, the chapter numbers are printed at the top of every left-hand
page. Theorems and lemmas are numbered in order throughout the
entire book.

The Foundation for Mathematical Education and Enlightenment and
especially S. I. Komarov and V. M. Imaikin helped me greatly in prepar-
ing the manuscript. S. P. Demushkin took upon himself the labor of
reading the manuscript and made many important comments. 1 convey
my heartfelt gratitude to all of them.

I. R. Shafarevich Moscow, 2000

Added to the English edition:

Finally, I express my cordial gratitude to Bill Everett, who translated
this book into English. As far as I can judge, this is beautiful English.
However, I am not an expert in this. But certainly, he greatly improved
the text as he showed me several mistakes and urged me by his questions
to clarify the exposition in some places.

IL.R.S. Moscow, 2002
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1
Integers

Topic: Numbers

1. +/2Is Not Rational

Natural numbers arose as a result of counting. An important step in
mankind’s development of logic was the recognition that two eyes, two
persons walking together, and the two oars of a boat have something in
common, something expressed in the abstract concept two. The next
step was taken with difficulty, which is evident because the word three
in many languages is equivalent to many or too much. But the concept
of an endless series of natural numbers was gradually worked out.

After that it was natural to use numbers not only for counting but
also for measuring lengths, areas, weights, and so on. For definiteness,
we discuss measuring the lengths of line segments. We first choose a
unit of length: millimeter (mm), centimeter (cm), kilometer (km), light
year. ... Let the line segment U define the unit of length. When the unit
of length is chosen, we can try to use it to measure other line segments.
If U is completely placed on a line segment A exactly n times, we say
that the length of the line segment A is n (Fig. 1a). But as a rule, some
small bit, smaller than the line segment U, remains uncovered (Fig. 1b).




2 1. Integers

Then we can reduce the unit of length, dividing U into m identical
smaller segments U’. If U’ is completely placed on the line segment A
exactly n’ times, then the length of A is equal to n'/m (in the original
unit of length U).

People in different lands in the course of milleniums used this proce-
dure in different situations until finally the question arose: Is such a
division of the unit of length always possible? This totally nov-
el question is related to a specific historical epoch; the question came
up in the school of Pythagoras in ancient Greece in the sixth or fifth
century B.C. The segments A and U are said to be commensurable if
there exists a segment U’ that can be completely placed on the segment
U exactly m times and on the segment A exactly n times. Thus, the
question is: Are any two given line segments commensurable?
Or (yet another form of the question), is the length of any given line
segment always a rational number n/m (in terms of a specified unit of
length)? The answer is NO! And it is very easy to give an example of
noncommensurable line segments. We consider a square whose side is
the unit of length U. Then we take the diagonal of the square to be the
line segment A.

Theorem 1. The side and the diagonal of a square are noncommen-
surable.

Before beginning the proof, we state the theorem in another form. We
compare the side and diagonal of a square using the famous Pythagorean
theorem: the area of the square constructed on the hypotenuse of a right
triangle is equal to the sum of the areas of the two squares constructed
on the other two sides of the triangle. Or, in other words, the hypotenuse
squared is equal to the sum of the two legs squared.

But the diagonal A of our square is the hy-
potenuse of an isosceles right triangle whose two
A legs coincide with the sides U of the square (Fig. 2).
U Therefore, in our case, A2 = 2U?, and if A and U
are commensurable, that is, if there exists U’ such

U that A = nU’ and U = mU’, then we would have
(n/m)? = 2, which is to say n/m = /2. Thus
Fig. 2 Theorem 1 can be stated differently.

Theorem 2. /2 is not a rational number.

We prove the theorem in this form. But first we make one observation.
Although we refer to the Pythagorean theorem, we use it in the very
special case of an isosceles right triangle. In this case, it is completely
obvious.
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It immediately follows from the known conditions for the equality of
triangles that all five small isosceles right triangles in Fig. 3 are equal.
Therefore they have the same area S. But the square constructed on
the line segment U consists of two such triangles, and its area is U2.
Therefore U? = 2S. Analogously, A> = 4S. Therefore A? = 2U% and
(AJU)? =2.

Now we can turn to the proof of Theorem 2.
Because we want to prove the impossibility of
representing v/2 in the form v2 = n/m, it is
natural to use proof by contradiction. We sup-
pose that v/2 = n/m, where n and m are nat- A
ural numbers. We take them to be relatively U
prime, that is, if they had a common divisor,
then it was canceled without changing the val- v
ue of the fraction n/m. By the definition of Fig. 3
a square root, the equality V2 = n/m means
that 2 = (n/m)? = n?/m?. Multiplying both sides by m?, we obtain the
equality

2m? = n?, (1)

where n and m are two relatively prime natural numbers.

Because we have the factor 2 in the left-hand side, naturally, the
question is tied to the divisibility of natural numbers by 2. Numbers
that are divisible by 2 are called even numbers, and those not divisible
by 2 are called odd numbers. By this definition, each even number &
can be represented in the form k = 2l, where [ is a natural number,
That is, we have a certain obvious expression for even numbers, while
odd numbers are so far defined purely negatively—this expression is
impossible for them. But we can easily obtain an obvious expression for
odd numbers, too.

Lemma 1. Each odd number r can be represented in the form r =
25+ 1, where s is a natural number or 0. Conversely, each such number
is odd.

The converse assertion is totally obvious: if r = 2s + 1 were even,
then it would have a representation r = 2/, whence -

A=2s+1, 21-s)=1.

And this assertion is obviously contradictory.
To prove the primary assertion, we note that if the odd number r < 2,
then r = 1 and the expression to be found has the form with s =
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0. And if the odd number r > 1, then already r > 3. Subtracting
2 from it, we obtain the number r; = r — 2 > 1, where r; is again
odd. If ry is still greater than 1, then we again subtract 2 and obtain
r2 = r; — 2. With this procedure, we obtain a decreasing series of odd
numbers 7, 71,72, ... in which each successive number is 2 less than the
preceding number. We can continue this as long as r; > 1. Because
natural numbers cannot decrease without limit, we eventually arrive at
the case where subtracting 2 is no longer possible, that is, r; = 1. We
obtain

Ti=Ti-1—2=7j3—-2-2=--=r—-2-2—----2=r-2{=1.

This means that 7 = 2i + 1, which was to be proved. O

We can now introduce a fundamental property of even and odd num-
bers.

Lemma 2. The product of two even numbers is even, the product of
an even number and an odd number is even, and the product of two odd
numbers is odd.

\

The first two assertions are obvious from the definition of an even
number: if k£ = 2[, then no matter what the second factor m is, even or
odd, always km = 2lm, which means it is even. But to prove the final
assertion, we need Lemma 1. Let k; and k; be odd numbers. According
to Lemma 1, we can represent them in the form

ki =251 +1, ky =285 +1,
where s; and s; are natural numbers or 0. Then
kiky = (231 + 1)(232 + 1) =4s180+28) + 289+ 1=2s + 1,

where s = 25183 + 51 + s2. We saw that any number of the form 2s + 1
is odd, and this means that k;k; is odd. O

We note a special case of Lemma 2: the square of an odd number is
odd.

Now it is completely easy to finish the proof of Theorem 2. We sup-
pose that equality (1) is satisfied, where m and n are relatively prime
natural numbers. If n were odd, then by Lemma 2, n? would be odd,
but it is even according to equality (1). Therefore, n is even and can
be represented in the form n = 2s. But m and n are relatively prime,
which means that m must be odd (otherwise m and n would have the
common divisor 2). Substituting the expression for n in equality (1) and
dividing by 2, we obtain
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2 - 9g2,
that is, the square of an odd number is even, which contradicts Lemma 2.
Theorem 2, and that means Theorem 1 also, is proved. a

We can look at Theorems 1 and 2 from a different point of view,
presuming that the result of measuring the length of a line segment
(with a given unit of length) is a certain number and that the square
root of any positive number is a certain number. Then Theorems 1
and 2 assert that in the case of the diagonal of a square or in the case of
V2, this certain number is not rational, in other words, it is irrational.
This is the simplest example of an irrational number. Many irrational
numbers exist. We meet some of them later. Probably, the most “well-
known” irrational number (after v/2) is 7, the ratio of the circumference
of a circle to its diameter. But to prowe that = is irrational requires more
complex means than we use here, and so we do not prove it in this book.

All numbers both rational and irrational together comprise the real
numbers. In one of the following chapters, we try to state more precisely
the logical meaning of the concept of a real number. Until then, we
continue to use real numbers in the form that they are usually taught
in school, not thinking especially about their logical basis.

Why did it take mankind so long to recognize the existence of such a
simple, and at the same time important, circumstance as the existence
of irrational numbers? The answer is simple—because for any practical
purpose, v'2, for example, can be considered a rational number. We
state this assertion in the form of a theorem.

Theorem 3. No matter how small a number € is given, it is possible
to find a rational number a = m/n such that a < V2and V2-ac<e.

Because all practical measurements by necessity are taken with a cer-
tain accuracy, we can consider that /2 is rational with that degree of
accuracy; we can say that our measurement gives us V2 as a rational
number.

To prove Theorem 3, we take our “no matter how small” number ¢ in
the form 1/10™ with sufficiently large n. We then find a natural number
k such that

k k+1
_< .
10"__\/5< 07 (2)

Then we can let a = k/10™ because v2 — k/10™ < 1/10™.
Inequality (2) is equivalent to the inequality

k? (k+ 1)?
105 = %< g
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or
k2 <2-10%" < (k+1)2.

Because the number n (and therefore the number 2-10?" also) is a given
specific number, there exists the greatest natural number & whose square
is not greater than 2-10%". This k gives the value of a that was needed.

Obviously, the conclusion in Theorem 3 holds not only for the number
v/2 but also for any positive real number x (we restrict ourselves here to
positive numbers for simplicity). This becomes obvious if we represent
z as a point on the number line, divide the unit of length U into the
small segments U/10", and then cover the number line with these small
segments (Fig. 4).

Fig. 4

Then the last mark that is not to the right of z gives the needed
rational number. If this mark is the kth mark, then

=< - —
a 10"_2: and T a<10n

Theorem 3 is proved. g

But now estimate, please, the depth of the assertion contained in
Theorems 1 and 2. This assertion could never be confirmed by any kind
of experiment, because an experiment is always conducted with a cer-
tain accuracy. And with any specified accuracy, v/2 can be expressed
as a rational number! This achievement of pure reason could not ap-
pear, even as a result of the accumulation of many milleniums of human
experience, until the revolution in mathematics that was accomplished
in ancient Greece during the 7th-5th centuries B.C. It is not surprising
that in the school of Pythagoras, this knowledge was considered a sa-
cred secret that must be withheld from the uninitiated. But one of the
Pythagoreans, Hippas, revealed the secret. According to one legend, the
gods punished him for this with death resulting from a shipwreck. A
hundred years later, Plato related in the book Laws how he, no longer
young, was smitten when he learned that it is not always possible “to
measure a length with a length.” He told of his “disgraceful ignorance.”
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“It seemed to me that this was characteristic not of a human but of
some sort of swine. And I was embarrassed not only for myself but also
for all Greeks.”

Proved Theorems 1 and 2 can shed light on a question mathemati-
cians often pose: Why are theorems proved? The first answer that comes
to mind is to become convinced of the truth of some assertion. But it
sometimes happens that the accumulation of particular cases of such
verification is so large that the truth of the assertion no longer elicits
any doubt (and often elicits the ridicule of physicists who say that math-
ematicians prove truths that were already beyond doubt). But we saw
that sometimes the proof introduces mathematicians to a totally new
world of mathematical ideas that would never have been known without
the proof.

Problems:

. Prove that the numbers v/6 and /2 are irrational.

. Prove that the number v/2 + /3 is irrational.

. Prove that the number /3 + /2 is irrational.

. Find v2 to the accuracy of 1/100.

. Prove that every natural number can be represented as a sum of terms of the
form 2* such that a given term occurs no more than once. Prove that there is
only one such representation for each natural number.

[ B T G

2. The Irrationality of Other Square Roots

It would be interesting now to try generalizing the results we obtained
in the previous section. For example, can we use the same method to
prove that +/3 is irrational? It is obviously natural to attempt adapting
our previous arguments to the new situation. We must now prove the
impossibility of the equality 3 = (n/m)? or

3m? = n?, (3)

where, as in Sec. 1, we can consider the fraction n/m to be reduced,
that is, the natural numbers m and n are relatively prime. Because the
factor 3 appears in equality (3), we naturally call upon the property of
divisibility by 3. We see how Lemmas 1 and 2 can be adapted to this
new case.

Lemma 3. Each natural number r either is divisible by 3 or can be
represented in one of the two forms r = 3s + 1 or r = 3s + 2, where s is
a natural number or 0. Conversely, numbers of the form 3s+1 or 3s+ 2
are not divisible by 3.



