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PREFACE

This is the volume of the proceedings of a conference on Nonlinear Partial
Differential Equations, which took place from June 20 - 26, 1982, at the
University of New Hampshire in Durham, New Hampshire. The conference was
sponsored by the American Mathematical Society, and was funded by the National
Science Foundation.

There were 67 participants, of which 16 people gave 1 hour talks, 17
people gave 1/2 hour talks and there were 11 informal 1/2 hour evening talks.
In addition there was an informal session on computational and numerical as-
pects of shock waves.

The theme of the conference was on time-dependent nonlinear partial dif-
ferential equations; in particular, the majority of the speakers lectured
either on shock waves or reaction-diffusion equations and related areas. The
first day speakers were asked to give an overview of their field: to describe
the main results, and the open problems.

Perhaps the most interesting feature of this conference was the constant
interplay between analysis, topology and computational methods.

I would 1ike to thank the members of the organizing committee, consisting
of C. Conley, P. Fife, T. P. Liu for their help and constant encouragement.

I am extremely grateful to Carole Kohanski for doing a superb job of mak-
ing the arrangements, and for being so helpful (and cheerful!) throughout the
week.

Joel Smoller
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THEORETICAL PROBLEMS AND NUMERICAL RESULTS
FOR NONLINEAR CONSERVATION LAWS

James Glimm1

Adaptive methods of numerical computation are most important for singular
problems, where ordinary methods give slow convergence and poor performance on
reasonable grid sizes. The singularities and the adaptation can refer both to
the geometrical space x, y, 2z, t of independent variables and to the state
space of dependent variables (pressure, velocity, temperature, . . .). The
simplest and most common singularities are jump discontinuities. Examples are
contact or material discontinuities, shock waves, chemical reaction fronts,
flame fronts and moving phase boundaries such as melting and boiling fronts.

In the simplest approximation, the governing equations are often nonlinear con-

servation laws. These are systems of hyperbolic equations of the form

u AF(u) = 0 (1)

and express conservation of the components ug of the vector

(mass, momentum, etc.) Associated with such systems, there is usually a second

order diffusion equation, for example

u, + VF(u) = €Au. (2)

A jump discontinuity is locally one dimensional in the appropriate (normal
and tangential) coordinates, and is analyzed through the study of a Riemann
problem. A Riemann problem is a Cauchy problem for (1) in one space dimension

with data

= = = <
u(x,t=0) uleft const, x 0
(3)
u(x,t=0) = u , = const, x > 0.
right

consisting of a single arbitrary jump discontinuity.

lSupported in part by the National Science Foundation, PHY80-09179, the
ARO, contract DAAG29-79-C-1079 and the DOE, contract DEA-CO2-76ER-03077.

© 1983 American Mathematical Society
02714132/82/0000-1010/$02.50



2 JAMES GLIMM

Because both the equation (1) and the data (2) are invariant under the
scale transformations
(s)

u-+u = u(sx,st),

we anticipate that solutions of the Riemann problem will be functions of

€ = x/t alone. However much more is true. It has been known since the funda-
mental paper of Lax [8] that the solution will consist of coherent waves, gen-
erally either shock or rarefaction waves. For an n X n system, there will
generally be n waves, separated by wedges in which u takes on a constant

value. Thus in figure 1, we have drawn two waves (n = 2), three wedges and one

rarefactiV shock wave
wave

i P S

Figure 1

new constant state umid' The allowed elementary, or coherent waves, that is
the shock, rarefaction and contact waves, are defined by solutions of ordinary
differential equations or algebraic or functional equations in the state space
Rn.

For a linear problem, that is F(u) = Au, with A an n X n matrix, the

coherent waves result from the expansion of the jump discontinuity
. -u =) a, e,
urlght left z i e1
as a sum of right eigenvectors of the matrix u. In fact if the eigenvectors

e, are numbered in the order of increasing eigenvalues Ai’ then in the nota-

tion of figure 1,

Ynia T Yleft T %1 %)

uright " Ynid 2 "2
Thus we see that the solution of the Riemann problem is equivalent to the expan-
sion into normal modes, and that this expansion continues to have meaning in
the nonlinear case. Having fixed the general ideas (see also [3,9,14] for more

details), we now turn to specific problems.

Riemann Problems in the large. The picture sketched above is too simple,

and we mention some of the complications which may arise. The research problem
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is partly to study Riemann problems associated with specific equations (chemi-
cal reactors, magnetohydrodynamics, ...) and to determine which further com-
plications arise and it is partly to find properties of the nonlinear flux
function F which characterize the phenomena in the solution of the Riemann
problem.

Nonconvexity of F occurs naturally in chemistry, elasticity and oil re-
servoir applications. It gives rise to composite waves, that is waves associa-
ted with a single nonlinear mode which are rarefaction waves with embedded
shocks. The phenomena is fully understood in the large only for single equa-
tions. 1In fact the meaning of convexity for F: R" + Rn, n > 1 is not clear.

Degenerate wave speeds occur naturally (the gas dynamics vacuum

A= M
is an example). The degeneracy may occur on an open subset of g (this is
typical of surfactant based tertiary recovery petroleum applications) or on a
set of codimension one, two, ... in the state space Rn. In the case of de-
generate wave speeds, the waves in the Riemann problem can be discontinuous as

a function of the data, (u u ), however the solution u = u(x,t), or

left’ "right

its time slice u(x,t ='to) remains continuous in some norm, as a function of
the same data. The degeneracy set li = Ai+l can be a boundary between hyper-
bolic behavior (all Ai real) and elliptic behavior (some Ai occur in complex
conjugate pairs). The transition between elastic and plastic behavior is an
example of this phenomena.

Existence of an entropy decreasing solution of the Riemann problem in the
large should be expected for “"reasonable" flux functions F, including all F
which occur in equations describing physical phenomena. One expects the solu-
tion to be composed of distinct coherent waves. When is uniqueness also ex-

pected?

Riemann Problems with source terms. Source terms may be introduced into

the right hand side of (1) due to curvature of a wavefront in two dimensions,
where x represents the normal direction to the wavefront. Also curvature of a
boundary (flow in a duct of variable cross section) or coordinate system gives
rise to source terms, when the flow is represented as a one dimensional flow.
The source terms in general produce extra waves, as well as a curvature of the
wave path. In order to retain scale invariance, we consider a delta function
source in (1) concentrated at x = 0. (We thank G. Marshall and D. Marchesin
for calling this suggestion to our attention.) For the case of scalar equations,
or isothermal or polytropic gas, the resulting Riemann problem has been solved
[10, 11]. The phenomena includes nonunique solutions and solutions discontinu-
ous in the data. Here the discontinuity of the solution is with respect to any

usual norm for u(x,t), as a function of x, t.
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Riemann Problems with second order data. See [5] for a discussion of this

problem.

Riemann Problems in two and three dimensions. In two and three space di-

mensions, discontinuities move and bend, remaining locally one dimensional.
However they also cross and form cusps, and become intrinsically two or three
dimensional in their local behavior. A coherent wave or diffraction pattern is
collection of one dimensional waves, meeting at a point (d = 2) or on a line
(@ = 3). To idealize this problem, we suppose the waves are planar or centered
rarefaction waves and the intermediate states are constant. However to be
called coherent, such a configuration should be dynamically stable. In general
such a configuration is not dynamically stable, but bifurcates into two or more
patterns which are stable. (These patterns could include rarefaction waves as
well as shocks.) The higher dimensional Riemann problem is to describe the
coherent, or dynamically stable diffraction patterns and to describe the nature
of the bifurcation process whereby an arbitrary such pattern evolves into sev-
eral stable diffraction wave patterns. For a single equation, work on this
problem has been given by Wagner [17], based on different motivations.

The numerical results I will discuss were obtained in collaboration with
O. McBryan and others. The general method has been a tracking method, to follow
discontinuity surfaces in two dimensions explicitly, and to propagate them
dynamically in time using the wave speeds obtained from solution of Riemann
problems. See [3, 4] for a discussion of these methods. We have applied these
methods to three areas: gas dynamics, oil reservoirs and the Rayleigh-Taylor
problem. The latter is a gravity driven fingering instability of the interface
between two fluids of different densities (say air and water). For gas dynamics,
we present sample runs of three types. I-Liang Chern, Brad Plohr, and O. McBryan

participated in this work.

Circular waves. This is a required test problem because the answer can be
obtained by an elementary and accurate one dimensional calculation in polar
coordinates. In Figure 2, we show the result of an expanding circular wave, on
a 15 X 15 grid. The pressure ratio between the inside and outside is 5:1.

Both the shock and the contact wave are tracked.

Diffraction by a wedge. Good experimental data [1] makes this a good test

problem. An incident plane wave collides with a wedge or ramp, producing a
reflected wave. See Figure 3.
Results of a 10 X 10 grid calculation. The results agree with a 40 X 40

grid calculation.

Vortex rollup (Helmholtz instability). We present results from early and

later stages of the calculation in Figure 4 and Figure 5. The grid is 20 X 20.
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Figure 3

A statistical analysis of fingers in the Taylor-Saffman instability. For

miscible displacement, we have studied the competing effects of an expanding
circular geometry (i.e. the neighborhood of a single injection well) which
gives stability and an adverse mobility ratio M > 1, which gives instability.
The result of this competition is that the fingers stabilize at a finite size
which is proportional to the distance from the source at the center, and thus
have a fixed length on a logarithmic scale. This can be seen in Figure 6 where
a number of runs with very distinct initial conditions give rise to the same
(logarithmic) finger length. This work was in collaboration with E. Isaacson

and O. McBryan.
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