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Preface

The purpose of this book is to isolate and draw attention to the most
important problem-solving techniques typically encountered in undergradu-
ate mathematics and to illustrate their use by interesting examples and
problems not easily found in other sources. Each section features a single
idea, the power and versatility of which is demonstrated in the examples
and reinforced in the problems. The book serves as an introduction and
guide to the problems literature (e.g., as found in the problems sections of
undergraduate mathematics journals) and as an easily accessed reference of
essential knowledge for students and teachers of mathematics.

The book is both an anthology of problems and a manual of instruction.
It contains over 700 problems, over one-third of which are worked in detail.
Each problem is chosen for its natural appeal and beauty, but primarily for
its unique challenge. Each is included to provide the context for illustrating
a given problem-solving method. The aim throughout is to show how a
basic set of simple techniques can be applied in diverse ways to solve an
enormous variety of problems. Whenever possible, problems within sections
are chosen to cut across expected course boundaries and to thereby
strengthen the evidence that a single intuition is capable of broad applica-
tion. Each section concludes with “Additional Examples” that point to
other contexts where the technique is appropriate.

The book is written at the upper undergraduate level. It assumes a
rudimentary knowledge of combinatorics, number theory, algebra, analysis,
and geometry. Much of the content is accessible to students with only a
year of calculus, and a sizable proportion does not even require this.
However, most of the problems are at a level slightly beyond the usual
contents of textbooks. Thus, the material is especially appropriate for
students preparing for mathematical competitions.
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viii Preface

The methods and problems featured in this book are drawn from my
experience of solving problems at this level. Each new issue of The
American Mathematical Monthly (and other undergraduate journals) con-
tains material that would be just right for inclusion. Because these ideas
continue to find new expression, the reader should regard this collection as
a starter set and should be encouraged to create a personal file of problems
and solutions to extend this beginning in both breadth and depth. Obvi-
ously, we can never hope to develop a “system” for problem-solving;
however, the acquiring of ideas is a valuable experience at all stages of
development.

Many of the problems in this book are old and proper referencing is very
difficult. I have given sources for those problems that have appeared more
recently in the literature, citing contests whenever possible. I would appreci-
ate receiving exact references for those I have not mentioned.

I wish to take this opportunity to express my thanks to colleagues and
students who have shared many hours of enjoyment working on these
problems. In this regard I am particularly grateful to O. E. Stanaitis,
Professor Emeritus of St. Olaf College. Thanks to St. Olaf College and the
Mellon Foundation for providing two summer grants to help support the
writing of this manuscript. Finally, thanks to all individuals who contrib-
uted by posing problems and sharing solutions. Special acknowledgement
goes to Murray S. Klamkin who for over a quarter of a century has stood
as a giant in the area of problem-solving and from whose problems and
solutions I have learned a great deal.

March 21, 1983 LoRrReN C. LARSON
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Chapter 1. Heuristics

Strategy or tactics in problem-solving is called heuristics. In this chapter we
will be concerned with the heuristics of solving mathematical problems.
Those who have thought about heuristics have described a number of basic
ideas that are typically useful. Among these, we shall focus on the follow-
ing:

(1) Search for a pattern.

(2) Draw a figure.

(3) Formulate an equivalent problem.

(4) Modify the problem.

(5) Choose effective notation.

(6) Exploit symmetry.

(7) Divide into cases.

(8) Work backward.

(9) Argue by contradiction.
(10) Pursue parity.
(11) Consider extreme cases.
(12) Generalize.

Our interest in this list of problem-solving ideas is not in their descrip-
tion but in their implementation. By looking at examples of how others
have used these simple but powerful ideas, we can expect to improve our
problem-solving skills.

Before beginning, a word of advice about the problems at the end of the
sections: Do not be overly concerned about using the heuristic treated in
that section. Although the problems are chosen to give practice in the use
of the heuristic, a narrow focus may be psychologically debilitating. A
single problem usually admits several solutions, often employing quite
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2 1. Heuristics

different heuristics. Therefore, it is best to approach each problem with an
open mind rather than with a preconceived notion about how a particular
heuristic should be applied. In working on a problem, solving it is what
matters. It is the accumulated experience of all the ideas working together
that will result in a heightened awareness of the possibilities in a problem.

1.1. Search for a Pattern

Virtually all problem solvers begin their analysis by getting a feel for the
problem, by convincing themselves of the plausibility of the result. This is
best done by examining the most immediate special cases; when this
exploration is undertaken in a systematic way, patterns may emerge that
will suggest ideas for proceeding with the problem.

1.1.1. Prove that a set of n (different) elements has exactly 2" (different)
subsets.

When the problem is set in this imperative form, a beginner may panic
and not know how to proceed. Suppose, however, that the problem were
cast as a query, such as

(i) How many subsets can be formed from a set of n objects?
(ii) Prove or disprove: A set with n elements has 2" subsets.

In either of these forms there is already the implicit suggestion that one
should begin by checking out a few special cases. This is how each problem
should be approached: remain skeptical of the result until convinced.

Solution 1. We begin by examining what happens when the set contains
0,1,2,3 elements; the results are shown in the following table:

Elements Number of
n of § Subsets of S : subsets of S
0 none 1%} 1
- 9, {x,} 2
2 x,x, 9, {x,}, {x3}, {x1, x5} 4
3 xpxpx3 9, {x}, {x3}, {x1, %2} 8

{x3}, {x1, %3}, { X2, %3}, {x),%5,%3)

Our purpose in constructing this table is not only to verify the result, but
also to look for patterns that might suggest how to proceed in the general
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case. Thus, we aim to be as systematic as possible. In this case, notice when
n =3, we have listed first the subsets of {x,,x,} and then, in the second
line, each of these subsets augmented by the element x,. This is the key
idea that allows us to proceed to higher values of n. For example, when
n = 4, the subsets of S = {x,,x,,x3,Xx,} are the eight subsets of {x,,x,,x;}
(shown in the table) together with the eight formed by adjoining x, to each
of these. These sixteen subsets constitute the entire collection of possibili-
ties; thus, a set with 4 elements has 0. (= 16) subsets.

A proof based on this idea is an easy application of mathematical
induction (see Section 2.1).

Solution 2. Another way to present the idea of the last solution is to argue
as follows. For each n, let 4, denote the number of (different) subsets of a
set with n (different) elements. Let S be a set with n + 1 elements, and
designate one of its elements by x. There is a one-to-one correspondence
between those subsets of S which do not contain x and those subsets that
do contain x (namely, a subset 7 of the former type corresponds to
T U {x)). The former types are all subsets of S — {x}, a set with n
elements, and therefore, it must be the case that

An+l T 2An *
This recurrence relation, true for n = 0,1,2,3, ..., combined with the fact
that A,=1, implies that 4,=2". (4,=24, =24, ,=--- =2"4,

=2")

Solution 3. Another systematic enumeration of subsets can be carried out
by constructing a “tree”. For the case n =3 and S = {a,b,c}, the tree is as
shown below:

Subset
c {a, b, ¢}
<b<5 : {a, b}
a
¢ {a, c}
b<z {a}
c {b, ¢}
N (b)
2 . c {c}
b<E 0

Each branch of the tree corresponds to a distinct subset of S (the bar over
the name of the element means that it is not included in the set correspond-
ing to that branch). The tree is constructed in three stages, corresponding to
the three elements of S. Each element of S leads to two possibilities: either
it is in the subset or it is not, and these choices are represented by two
branches. As each element is considered, the number of branches doubles.
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Thus, for a three-element set, the number of branches is 2 X 2 X 2 = 8. For
an n-element set the number of branches is
D b D O
Wb i i,
n
thus, a set with n elements has 2" subsets.

Solution 4. Suppose we enumerate subsets according to their size. For
example, when S = {a,b,c,d}, the subsets are

Number of . Number of
elements : subsets
0 1] 1
1 {a}, {b}, {c}, {d} 4
2 {a,b},{a,c},{a,d},{b,c},{b,d},{c,d} 6
3 {a,b, o} {abjdy, {a,c,d}; {bc;d} 4
4 {a,b,c,d} 1

This beginning could prompt the following argument. Let S be a set with
n elements. Then

No. of subsets of § = 2 (No. of subsets of S with k elements)
k=0 :

Q[0
= = 2".
2 (k)
The final step in this chain of equalities follows from the binomial theorem,

(3= 3 ()t

upon setting x =1 and y = 1.

Solution 5. Another systematic beginning is illustrated in Table 1.1, which
lists the subsets of S = {x,,x,,x3}. To understand the pattern here, notice
the correspondence of subscripts in the leftmost column and the occurrence

Table-I:1

Subset Triple Binary number Decimal number
4] (0,0,0) 0 0
{x3) 0,0,1) 1 1
{x5} 0,1,0) 10 2
{25555} 0151 11 3
{x1} (1,0,0) 100 4
{x1, %3} (1,0, 1) 101 5
{X1iX%5} (1,1,0) 110 6
(XXX GRTR, 111 7
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of I’s in the second column of triples. Specifically, if 4 is a subset of

8wy, Xaui sy X Yy define g, forim 1,2, Dy, by
1 1S anerd),
o {0 if o ¢A.
It is clear that we can now identify a subset 4 of S with (a,,a,, ..., a,), an

n-tuple of 0’s and 1’s. Conversely, each such n-tuple will correspond to a
unique subset of S. Thus, the number of subsets of S is equal to the
number of n-tuples of 0’s and 1’s. This latter set is obviously in one-to-one
correspondence with the set of nonnegative binary numbers less than 2".
Thus, each nonnegative integer less than 2" corresponds to exactly one
subset of S, and conversely. Therefore, it must be the case that S has 2"
subsets.

Normally, we will give only one solution to each example—a solution
which serves to illustrate the heuristic under consideration. In this first
example, however, we simply wanted to reiterate the earlier claim that a
single problem can usually be worked in a variety of ways. The lesson to be
learned is that one should remain flexible in the beginning stages of
problem exploration. If an approach doesn’t seem to lead anywhere, don’t
despair, but search for a new idea. Don’t get fixated on a single idea until
you've had a chance to think broadly about a variety of alternative
approaches.

1.1.2. Let S,,, S,,, and S, , denote the sum of every third element in the
nth row of Pascal’s Triangle, beginning on the left with the first element,
the second element, and the third element respectively. Make a conjecture

concerning the value of S,y ;.

Solution. We begin by examining low-order cases with the hope of finding
patterns that might generalize. In Table 1.2, the nonunderlined terms are
those which make up the summands of S,,; the singly underlined and

Table 1.2
Pascal’s triangle n Sno0 S Su2
1 0 3. 0 0
11 1 1 1 i B
t 53 % 1 2+ 1
13 31 3 b 3 3
14 641 4 5 5 6*
15 s 1 5 11 10~ 11
16 152015 6 1 6 22* 21 21
y g airasias TR 7 43 43 42-
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doubly underlined terms are those of S, and S, ,, respectively. The three
columns on the right show that, in each case, two of the sums are equal,
whereas the third is either one larger (indicated by a superscript +) or one
smaller (indicated by a superscript —). It also appears that the unequal
term in this sequence changes within a cycle of six. Thus, from the pattern
established in the first rows, we expect the anomaly for n = 8 to occur in
the middle column and it will be one less than the other two.

We know that S, ,+ S, , + S,, =2" (see 1.1.1). Since 100 =6 X 16 + 4,
we expect the unequal term to occur in the third column (S,4,,) and to be
one more than the other two. Thus S50 = Si00.1 = Si002 — I, and S;o0; +
Si001+ Sioon + 1= 2'% From these equations we are led to conjecture
that

: 2100
Si001 = T e

A formal proof of this conjecture is a straightforward application of
mathematical induction (see Chapter 2).

1.1.3. Let x,,x,,X;, ... be a sequence of nonzero real numbers satisfying

Xn—2%Xpn—1

X 2 =3 4.5 .o

N DT
2xn—2 xn—l

Establish necessary and sufficient conditions on x, and x, for x, to be an
integer for infinitely many values of n.

Solution. To get a feel for the sequence, we will compute the first few terms,
expressing them in terms of x, and x,. We have (omitting the algebra)

S
X3 i 2xl 7= X 1
Sl
BB IO
L XD
e 4x; —3x,

We are fortunate in this particular instance that the computations are
manageable and a pattern emerges. An easy induction argument establishes
that

B XX
" (n=1x;— (n—2)x,’

X,

which, on isolating the coefficient of n, takes the form

= XXy
ok (i 2t (2%, ~ %, F
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In this form, we see that if x, # x,, the denominator will eventually exceed
the numerator in magnitude, so x, then will not be an integer. However, if
X, = X,, all the terms of the sequence are equal. Thus, x, is an integer for
infinitely many values of » if and only if x; = x,.

1.1.4. Find positive numbers n and a,,4a,, . . ., a, such thata, + - - - + q,
= 1000 and the product a,a, - - - a, is as large as possible.

Solution. When a problem involves a parameter which makes the analysis
complicated, it is often helpful in the discovery stage to replace it temporar-
ily with something more manageable. In this problem, we might begin by
examining a sequence of special cases obtained by replacing 1000 in turn
with 2,3,4,5,6,7,8,9, ... . In this way we are led to discover that in a
maximum product

(i) no a; will be greater than 4,
(ii) no a; will equal 1,
(iii) all @’s can be taken to be 2 or 3 (because 4 =2 X 2 and 4 = 2+ 2),
(iv) at most two a;’s will equal 2 (because 2 X2 X2 <3 X3 and2+2+2
=3 + 3).

Each of these is easy to establish. Thus, when the parameter is 1000 as in
the problem at hand, the maximum product must bg 3*** X o

1.1.5. Let S be a set and * be binary operation on S satisfying the two
laws

xX*x =X for all x in S,

(x*y)*xz=(y*z)*x for all x, y,z in S.
Show that x * y = y = x for all x, y in S.

Solution. The solution, which appears so neatly below, is actually the end
result of considerable scratch work; the procedure can only be described as
a search for pattern (the principle pattern is the cyclic nature of the factors
in the second condition). We have, for all x, y in S, x * y = (x * y) *(x * )
= [yx(x*p)]*x = [(x*p)*x]*y = [(p*x)*xx]*xy = [(x*x)*y]*y
=[(y*)*(x*x)=y=*x. :

Problems
Develop a feel for the following problems by searching for patterns. Make

appropriate conjectures, and think about how the proofs might be carried
out.
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1.1.6. Beginning with 2 and 7, the sequence 2,7,1,4,7,4,2,8, ... is con-
structed by multiplying successive pairs of its members and adjoining the
result as the next one or two members of the sequence, depending on
whether the product is a one- or a two-digit number. Prove that the digit 6
appears an infinite number of times in the sequence.

1.1.7. Let S, denote the sequence of positive integers 1,2,3,4,5, 6,5
and define the sequence S, , , in terms of S, by adding 1 to those integers in
S, which are divisible by n. Thus, for example, S, is 2,3,4,5,6,7, ..., S3
is 3,3,5,5,7,7, . . . . Determine those integers n with the property that the
first n — 1 1ntegers in: S, are n,

1.1.8. Prove that a list can be made of all the subsets of a finite set in such
a way that

(i) the empty set is first in the list,
(ii) each subset occurs exactly once, and
(iii) each subset in the list is obtained either by adding one element to the
preceding subset or by deleting one element of the preceding subset.

1.1.9. Determine the number of odd binomial coefficients in the expansion
of (x +y)'0°°. (See 4.3.5.)

1.1.10. A well-known theorem asserts that a prime p > 2 can be written as
a sum of two perfect squares (p = m? + n?, with m and n integers) if and
only if p is one more than a multiple of 4. Make a conjecture concerning
which primes p > 2 can be written in each of the followmg forms, using
(not necessarily positive) integers x and y: (a) x2+ 16y (b) 4x? + 4xy +
5y%. (See 1.5.10.)

1.1.11. If {a,) is a sequence such that for n > 1, 2 — a,)a,,, = 1, what
happens to a, as n tends toward infinity? (See 7.6.4.)

1.1.12. Let S be a set, and let * be a binary operation on § satisfying the
laws

X*(x*y)=y forall x, y in S,
(yex)*x=y for all x, y in S.
Show that x * y = y* x for all x, y in §S.

Additional Examples

Most induction problems are based on the discovery of a pattern. Thus, the
problems in Sections 2.1, 2.2, 2.3, 2.4 offer additional practice in this
heuristic. Also see 1.7.2, 1.7.7, 1.7.8, 2.5.6, 3.1.1, 3.4.6, 43.1, 44.1, 443,
4.4.15, 4.4.16, 4.4.17.
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1.2. Draw a Figure

Whenever possible it is helpful to describe a problem pictorially, by means
of a figure, a diagram, or a graph. A diagrammatic representation usually
makes it easier to assimilate the relevant data and to notice relationships
and dependences.

1.2.1. A chord of constant length slides around in a semicircle. The
midpoint of the chord and the projections of its ends upon the base form
the vertices of a triangle. Prove that the triangle is isosceles and never
changes its shape.

Solution. Let 4B denote the base of the semicircle, let XY be the chord, M
the midpoint of XY, C and D the projections of X and Y on AB (Figure
1.1). Let the projection of M onto AB be denoted by N. Then N is the
midpoint of CD and it follows that A CMD is isosceles.

To show that the shape of the triangle is independent of the position of
the chord, it suffices to show that Z MCD remains unchanged, or equiva-
lently, that Z XCM is constant, for all positions of XY. To see that this is
the case, extend XC to cut the completed circle at Z (Figure 1.2). Then CM
is parallel to ZY (C and M are the midpoints of XZ and XY, respectively),

I
|
|
I
Jo

A € N =R
Figure 1.1.
X
M
Y
A L] B
€ D
Z

Figure 1.2.



