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Chapter 1

INTRODUCTION

Summary

Seismic waves are one of the standard diagnostic tools that are used to
determine the mechanical parameters (volume density of mass, com-
pressibility, elastic stiffness) in the interior of the earth and the geom-
etry of subsurface structures. There is increasing evidence that in the
interpretation of seismic data—especially shear-wave data—the influ-
ence of anisotropy must be taken into account. With this in mind, we
present a method to compute the seismic waves that are generated by
an impulsive source in a stratified anisotropic medium.

1.1 Statement of the problem

Although the present monograph has been written with the seismic
applications in mind, the method that is developed is not limited to
solid-earth geophysics. The classical example of waves in anisotropic
media are the elastic waves in crystals (Musgrave 1970). Furthermore,
many ultrasonic devices are constructed by using layers of piezoelec-
tric (and, hence, anisotropic) materials; often these devices, too, are
appropriately described by the idealized geometries discussed in this
book. Electromagnetic waves in the ionosphere (Budden 1961, Felsen
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and Marcuvitz 1973, p.740) and in integrated optical devices (crystal
optics) (Born and Wolf 1980, p.665, Yariv and Yeh 1984) are further
examples where anisotropy of the medium must be included in the
description. In short, the methods discussed in this monograph are
applicable wherever waves propagate in stratified, anisotropic media.

Seismic anisotropy is very common in the earth. There are sev-
eral causes of anisotropy: the interleaving of thin sedimentary beds,
the presence of preferentially oriented cracks, the occurrence of stress-
induced effects, and the alignment of crystals or grains. Until recently,
interpretation of seismic data focused mainly on compressional waves.
In the latter, anisotropy is expected to be of little importance; it is
often simply ignored. But, with the increasing resolution of seismic
observations, the influence of anisotropy is often noticeable, and of
particular importance when shear waves are analyzed. In fact, one can
safely state that in the real earth there exists no isotropic rock. How
strong is the anisotropy and how strong does it manifest itself in elas-
tic wave propagation? To answer this question quantitatively, we need
a good understanding of how anisotropy affects the observed seismic
wave fields. Such an understanding can be gained by building appro-
priate computer models and calculating, in some idealized geometries,
the acoustic wave fields and their accompanying seismic records. The
present monograph describes one idealized model, viz., the stratified
medium. In this model, the influence of anisotropy in each layer can
be studied separately.

There are fundamental differences between acoustic wave propaga-
tion in isotropic and anisotropic elastic media. These differences are
already manifest in the propagation of uniform plane waves in a homo-
geneous region with a horizontal boundary. In an isotropic medium,
one can distinguish between the compressional (P) and the, vertically
or horizontally polarized, shear waves (SV and SH, respectively). The
decomposition into these three eigenwaves is based on the polarization
of their particle displacement, or their particle velocity, with respect
to the horizontal plane, so that “V” means “vertical” and “H” means
“horizontal.” The particle velocity of the P waves is curl-free, while the
particle velocities of the SV and the SH waves are divergence-free.

In a weakly anisotropic medium (weak in the sense that the medium
is characterized by constitutive coefficients that are only small pertur-
bations of the ones pertaining to some isotropic medium), the plane
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waves in a certain direction of propagation can still be labeled as
quasi-P (qP) waves, with approximately longitudinal polarization of the
particle velocity, and quasi-SV (qSV) and quasi-SH (qSH) waves, with
approximately transverse polarization of the particle velocity (Keith
and Crampin 1977b, Aki and Richards 1980, p.188). The decompo-
sition into these three modes is again carried out with respect to the
horizontal plane, so that “V” means “mostly vertical” and “H” means
“mostly horizontal.” In a strongly anisotropic medium, there are three
plane waves with mutually orthogonal particle velocity polarizations
in every direction of propagation. The wave speeds of these waves are
different and vary with direction. Identification of the waves according
to specific dominant particle velocity polarizations is now meaningless.
Except in certain symmetry directions, none of the three wavesis either
curl-free or divergence-free in its particle velocity.

In this monograph, we investigate features of the wave field radiated
by a concentrated source in a medium that is horizontally stratified,
and where each layer is a homogeneous, and arbitrarily anisotropic,
solid. The configuration serves as a canonical problem. Two sources,
which are of seismic interest, are considered in detail, viz. a point source
of expansion (model for an explosive source) and a point force (model
for a mechanical vibrator). The theory also applies to point sources
of deformation rate, which are adequate models for earthquake gener-
ation. The results can guide the interpretation of experimental data
acquired in the more complicated situations met in practice, where the
layers may not all be parallel.

1.2 The method of solution employed

The standard approach to the problem stated in Section 1.1 is to em-
ploy a Fourier transformation with respect to time and Fourier transfor-
mations with respect to the horizontal spatial coordinates. To obtain
numerical results, the relevant inverse transformations have to be evalu-
ated numerically, possibly using asymptotic methods in certain regions
of space-time. This approach is similar to the frequency-wavenumber
integration method used by Booth and Crampin (1983) and Fryer and
Frazer (1984).

We solve the problem by a different method, viz., by applying the
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Cagniard-de Hoop method (de Hoop 1960, 1961, see also Miklowitz
1978, p.302, and Aki and Richards 1980, p.224), which, in general, re-
quires considerably less computation. In multilayered media the wave
field is represented as a sum of generalized rays (Spencer 1960). Each of
these is a wave constituent with a unique trajectory determined by in-
teractions at interfaces and propagation through layers. The Cagniard-
de Hoop method is then applied to each generalized ray individually.
With this method, the computational results can be obtained relatively
easily with any degree of accuracy; they can thus be used as a check on
the accuracy of the numerical procedures that are employed to evalu-
ate the inversion integrals in the standard treatment of the problem,
i.e. the frequency-wavenumber integration method. The latter numer-
ical technique seems to be the only available procedure that can be
used when the materials have an arbitrary loss mechanism, or when
the geometry involves curved surfaces.

We shall compare our method to various alternative methods at ap-
propriate places in this monograph. Some of these alternative methods
that can deal with anisotropy in layered media are: the frequency-
wavenumber integration method mentioned above, ray-tracing meth-
ods for asymptotic high-frequency results and first-arrival analysis,
and finite-element and finite-difference methods. The latter numeri-
cal methods can deal with arbitrarily inhomogeneous media, but re-
quire enormous computational effort. In contrast, the Cagniard-de
Hoop method and the frequency-wavenumber integration method are
both integral-transformation methods that are restricted to a special
geometry, such as horizontal stratification and time invariance of the
configuration.

The monograph consists of two parts: acoustic waves in isotropic
media and acoustic waves in anisotropic media. The separate formu-
lation for isotropic media has been included for didactical purposes.
Although the general method is the same, the resulting expressions are
simpler than the ones in anisotropic media. By offering the opportu-
nity to look back at the analogous expression for isotropic media, the
physical interpretation of the results pertaining to anisotropic media
becomes much easier.

There is, however, another reason to write down explicitly, in Chap-
ters 3 to 5, the analysis of acoustic wave propagation in stratified isotro-
pic media with the aid of the Cagniard-de Hoop method. This reason
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is that nowhere in the literature the solution of this problem has been
written up completely in its simplest form. Many publications on this
problem can be found, but we feel there is always something miss-
ing. First, Cagniard’s (1939) book and the translation by Flinn and
Dix (1962) contain the original, intricate version of the transformation
back to the time domain with the intermediate complex time variable.
The latter difficulty was circumvented by de Hoop (1960), who sim-
plified the transformation scheme such that the time variable remains
real all the way through, but de Hoop’s (1960) paper deals only with
the case of a source in infinite space. Meanwhile, many authors used
the method to solve a variety of specific problems. We mention the
solution of Lamb’s problem, where the elastic half space is considered
(de Hoop 1961, Gakenheimer 1969). Some authors used only the two-
dimensional version of the method (Achenbach 1973, p.298). Others
studied multilayered structures, but either missed de Hoop’s modifi-
cation (Pao and Gajewski 1977), solved only the scalar acoustic case
(Aki and Richards 1980), or introduced approximations to the method
(Wiggins and Helmberger 1974). Of course, there are many positive
aspects to these papers; in fact, we have used them as much as possible.
We mention great educational clarity (Aki and Richards 1980), elegant
notation (Pao and Gajewski 1977) and a very clear and detailed state-
ment of the results (Johnson 1974, Wiggins and Helmberger 1974). In
particular, we shall present the solution to the problem in its simplest
form and state its concise solution for the all-encompassing case of an
arbitrarily layered isotropic solid.

A final reason to include the analysis for isotropic media is that we
want to present a formalism for wave propagation in stratified media
that is generally applicable, i.e. to anisotropic media as well. Therefore,
we have avoided concepts that are only advantageous in isotropic me-
dia, such as circularly cylindrical coordinates and the wave equations
for the scalar and the one-component vector potentials. In this book,
it becomes clear that Cartesian coordinates and the wave equations
for the particle velocities and stresses are the more general ingredi-
ents since they are the keystones for the analysis of wave propagation
in anisotropic media. The absence of directional independence in an-
isotropic media, removes the advantage of circularly cylindrical coor-
dinates (and the corresponding separation of variables) in analyzing
the acoustic waves radiated by a concentrated source in a stratified



6 INTRODUCTION

medium. Furthermore, the properties of anisotropic media are most
easily expressed through Cartesian tensors, so a Cartesian reference
frame is the simplest setting for the wave phenomena. (This does not
withstand the fact that when studying wave propagation generated by
a source in a geometry with circularly cylindrical interfaces, it may
still be necessary to employ circularly cylindrical coordinates to satisfy
the boundary conditions at the interfaces; the latter type of problem
is beyond the scope of our present analysis.)

For the same reason of general applicability, we have used in Chap-
ters 2, 6, and 7 a formalism that applies to arbitrarily anisotropic
media. Several authors who have discussed the influence of anisotropy
have limited themselves to special cases of symmetry, like transversely
isotropic media (Payton 1983), or to weakly anisotropic media (Booth
and Crampin 1983). The range of anisotropy in geophysical applica-
tions, however, is not limited to these special cases.

1.3 Numerical considerations

In the numerical treatment of the problem the following steps can be
distinguished: (1) Selection of the generalized rays that have to be
included in the calculation, (2) Calculation of the Cagniard-de Hoop
contour for each generalized ray, (3) Its use to construct, by inspection,
the time-domain Green’s function, (4) Convolution of the Green’s func-
tion with the source pulse to arrive at the complete waveform at the
receiver position. The numerical methods consist of simple algorithms:
an eigenvalue procedure to obtain the wave speeds (in anisotropic me-
dia), an iterative root-finding procedure to get the Cagniard-de Hoop
contour, and the evaluation of a finite-range convolutional integral.

The standard objection to the generalized-ray /Cagniard-de Hoop
method is that: “In a many-layered model there are far too many
rays for efficient computation” (Chin, Hedstrom, and Thigpen 1984).
This objection can be overcome by using an appropriate (energy-based)
criterion in selecting rays.

In fact, selection of the generalized rays is crucial to the success of
the method. First, we note that all generalized rays are causal func-
tions of time; hence, they arrive, one after another, at an observation
point. In practice, one is only interested in a synthetic seismogram



