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Preface

In the past the sheer labour of numerical processes restricted their development
and usefulness. Digital computers have removed this restriction, but at the same
time have provided a challenge to those who wish to harness their power. Much
work has been put into the development of suitable numerical methods and the
computer organizational problems associated with their implementation. Also, new
fields of application for numerical techniques have been established.

From the first days of computing the significance of matrix methods has been
realized and exploited. The reason for their importance is that they provide a
concise and simple method of describing lengthy and otherwise complicated
computations. Standard routines for matrix operations are available on virtually
all computers, and, where these methods are employed, duplication of programming
effort is minimized. Matrices now appear on the school mathematics syllabus and
there is 2 more widespread knowledge of matrix algebra. However, a rudimentary
knowledge of matrix algebra should not be considered a sufficient background for
embarking upon the construction of computer programs involving matrix techniques,
particularly where large matrices are involved. Programs so developed could be
unnecessarily complicated, highly inefficient or incapable of producing accurate
solutions. It is even possible to obtain more than one of these deficiencies in the
same program. The development of computer methods (most certainly those
involving matrices) is an art which requires a working knowledge of the possible
mathematical formulations of the particuiar problem and also a working knowledge
of the effective numerical procedures and the ways in which they may be
implemented on a computer. It is unwise to develop a very efficient program if it
is so complicated that it requires excessive programming effort (and hence program
testing time) or has such a small range of application that it is hardly ever used. The
right balance of simplicity, economy and versatility should be sought which most
benefits the circumstances.

Chapter 1 is intended to act as a review of relevant matrix algebra and hand
computational techniques. Also included in this chapter is a discussion of the matrix
properties which are most useful in numerical computation. In Chapter 2 some
selected applications are briefly introduced. These are included so that the reader
can see whether his particular problems are related to any of the problems
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mentioned. They also illustrate certain fearures which regularly occur in the
formulation of matrix computational techniques. For instance:

(a) Alternative methods may be available for the solution of any one problem (as
with the electrical resistance network, sections 2.1 and 2.2).

(b) Matrices often have special properties which can be utilized, such as symmetry
and sparsity.

(c) Itmay be necessaiv to repeat the solution of a set of linear equations with
modified right-hand sides and sometimes with modified coefficients (as with
the non-linear cable problem, secrian 2.12),

Chapter 3 describes those aspects of computer programming technique which
are most relevant to matrix computation, the scorage allocation being particulariy
important for sparse matrices. Multiplication is the main matrix operation discussed
in this chapter. Here it is interesting to note that some forethought is needed to
program even the mulitiplication of two matrices if they are large and/or sparse.
Numerical techniques ror solving linear equations are presented in Chapters 4, §
and 6. The importance of sparse mairizes in many appiications has been taken into
account, including the considerable eftect on the choice of procedure and the
computer implementation.

Chapter 7 byiefly introduces some eigenvalue problems and Chapters 8, 9 and 10
describe numerical methods for eigensolution. Although these last four chapters
muay be considered to be separate trom the first six, there is some advantage to be
gained from including procedures for solving linear equations and obtaining eigen-
values in the same book. For one reason, most of the eigensolution procedures make
use of the techniques for solving linear equations. For another reason, it is necessary
to be familbar with eigenvalue properties in order to obtain a reasonably comprehen-
sive understanding of methods of solving linear equations.

Three short appendices have been included to help the reader at various stages
during the preparation of application programs. They take the form of question-
naire checklists on the topics of program layout, preparation and verification.

Corresponding ALGOL and FORTRAN versions of small program segments have
been included in Chapters 2, 3, 4 and 5. These segments are not intended for direct
computer use, but rather as illustrations of programming technique. They have been
written in such a way that the ALGOL and FORTRAN versions have similar
identifiers and structure. In general this means that the ALGOL versions, while
being logically correct, are not as elegant as they might be. To obtain a full
appreciation of the complete text it is therefore necessary to have some acquain-
tance with computer programming. From the mathematical standpoint the text is
meant to be as self-sufficient as possible.

I hope that the particular methods given prominence in the text, and the
discussion of them, are not only justified but also stand the test of time. I will be
grateful for any comments on the topics covered.

ALAN JENNINGS
Department of Civil Enginecring,
Queen’s University, Belfast
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Chapter 1
Basic Algebraic and Numerical Concepts -

1.1 WHAT IS A MATRIX?

A matrix can be described simply as a rectangular array of elements. Thus

20510
A=]1 31 31 (1.1)
32460

is a matrix of order 3 x 5 as it has three rows and five columns. The elements of a
matrix may take many forms. In matrix (1.1) they are all real non-negative integers;
however, they could be real or complex numbers, or algebraic expressions, or, with
the restrictions mentioned in section 1.15, matrices themselves or matrix
expressions. The physical context of the various elements need not be the same; if
one of the elements is a measure of distance, it does not follow that the other
elements have also to be measures of distance. Hence matrices may come from a
large variety of sources and take a variety of forms. Computation with matrices will
involve matrices which have elements in numerical form. However, matrices with
elements of algebraic form will be of significance in the theoretical discussion of
properties and procedures. . .
Matrix (1.1) could represent the numbers of different coins held by three boys,
the columns specifying the five coin denominations (i.e. 1 p, 2 p, 5 p, 10 p and
50 p) while the rows differentiate the boys. The interpretation of matrix A would
therefore be according to Table 1.1. Whereas any table of information could be
considered as a matrix by enclosing the data within square brackets, such
consideration would be fruitless unless it can operate with some other matrices in

Table 1.1  Possible interpretation of matrix (1.1)

Coins
lp 2p 5p 10p 50p
Tom 2 4] 5 1 - 0
Dick 1 3 1 3 1
Harry 3 2 4 6 0
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such a way that the rules of matrix algebra are meaningful. Before describing the
basic rules of matrix algebra it is necessarv to be able to specify any element of a
matrix algebraically. The usual method for this is to replace whatever labels the
rows and columns have by numbers, say 1 to m for rows and 1 to # for columns,
and then to refer to the element on row 7 and column j of matrix A as g;;.

A matrix s square it s = i and is rectangular if m 7 . '

1.2 THE MATRIX EQUATION

Probably the most fundamental aspect of matrix algebra is that matrices are equal
only if they are identical, i.e. they are of the same order and have corresponding
clements the same. The identity (1.1) is a valid matrix equation which implies

m x n ordinary equations defining each element u;;, e.g. az4 = 6. This property of
being able to represent a multiplicity of ordinary equations by a single matrix
equation is the main power of matrix methods. (This is in distinct contrast to

determinants where the equation
Jdy1 d12 | 5 1 ‘

1 1]

(1.2)

-
a21 dzz{

does not define the elements a1 1, @12, 721 and 422 but only specifies a relation-
ship between them.

If they are of the same order, two matrices may be added by adding correspond-
ing elements. If Table 1.1 describes the state of Tom, Dick and Harry’s finances at
the beginning of the dayv and if their transactions during the day are represented by
Table 1.2 which specifies a further matrix H, then the state of their finances at the
end of the day is given by the matrix ’

G=A+H
Le.
20510 -2 12 -1 0 01700 r (1.3)
G=l13 13 1|+ 002 3 -1|={13360
32460 -1 23 -1 0 2 4750

Matrix subtraction may be defined in a corresponding wav to matrix addition.
Scalar multiplication of a matrix is such thar all the elements of the matrix are

Table 1.2 Transactions of Tom, Dick and Harry (negative
terms imply expenditure)

Coins
lp 2p 5p 10p 50p
Tom -2 1 2 -1 0
Dick 0 0] 2 3 -1
Harry -1 2 3 -1 0




multiplied by the scalar. From these definitions it follows that, for instance, the
matrix equation

A=B+uC-D ' (1.4)

where A, B, C and D are 3 x 2 matrices and y is a scalar, is equivalent to six simple
linear equations of the form

ajj = bj; + pcyj — dj (1.5)

1.3 MATRIX MULTIPLICATION

Two matrices may only be multiplied if the number of columns of the first equals
the number of rows of the second, in which case they are said to be conformabie. 1f
matrix A, of order m x p, is multiplied by matrix B, of order p x n, the product

C=AB (1.6)
is of order m x n with typical element
P
cij =k§1 8ikbj : (1.7)
With A as in equation (1.1) and
[1 1]
1 2
B=1]1 5 (1.8)
1 10
{1 50 ]

the product matrix C = AB is given by

(1] 1
€11 €12 20510 1| 2 8 37
c21 c22 =113 1 31 1 s|=1| 9 92 (1.9)
€31 €32 1| 10 87
| 11 50

The rule that the element ¢ij is obtained by scalar multiplication of row i of A by
column j of B has been illustrated for c3; by including the relevant elements in
boxes. The choice of the matrix B has been such that the matrix C yields, in its
first column, the total number of coins held by each boy and, in its second
column, the total value, in pence, of the coins held by each boy.

Except in special cases the matrix product AB is not equal to the matrix
product BA, and hence the order of the matrices in a product may not, in general.
be reversed (the product BA may not even be conformable). In view of this it is not
adequate to say that A is multiplied by B; instead it is said that A is postmultiplied
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by B or B is premultiplied by A. Unless either A or B contain zero elements the
total number of multiplications necessary to evaluate C from equation (1.6) is
m X p x n, with almost as many addition operations. Matrix multiplication can
therefore involve a great deal of computation when m, p and # are all large.

If the multiplication of two large matrices is to be performed by hand it is
advisable to include a check procedure to avoid errors. This can be done by
including an extra row of column sums in A and an extra column of row sums in B.
The resulting matrix C will then contain both row and column sum checks which
enable any incorrect element to be pinpointed. With this checking procedure
equation (1.9) would appear as

z
(11| 2] >
20510‘12I3 837}45
1313115I6= 992:101 (1.10)
32 4 60| ol 15 87 | 102
Zl6 5 10 10 1 1 50 1514 ZL32 216 | 248

Multiple products

If the product matrix C of order # x »# {equation 1.6) is further premultiplied by a
matrix D of order r x m, the final product can be written as

[F] [p] [a] [B] (1.11)
rxn rxm mxp pxn

It can be verified that the same result for F is obtained if the product DA 1s
evaluated and the result postmultiplied by B. For this reason brackets are left out
of multiple products so that equation (1.11) is written as

F = DAB (1.12)

It is important to note that whereas D(AB) has the same value as DA(B) the
order of evaluation of the products may be very important in numerical
computation. For example, if D and A are of order 100 x 100 and B is of order
100 x 1, the total number of multiplications for (DA)B is 1,010,000 and for D(AB)
is 20,000. It is therefore going to be roughly fifty times faster to evaluate R by
multiplying AB first. If this calculation were to be performed by hand, the operator
would not get far with the multiplication of AB before he realized that his method
was unnecessarily long-winded. However, if a computer is programmed to evaluate
the multiple product the wrong way round this oversight may remain buried in the
program without detection. Although such an oversight appears only to involve a
penalty of extra computation time, it is likely that the accuracy of the computed
results would be less due to the greater accumulation of rounding errors (see
section 3.2). '



