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INFINITE ABELIAN GROUPS



PREFACE TO THE REVISED EDITION

In the second edition a number of misprints and errors have been
corrected and Sections 6, 16, 17 (test problems, complete modules,
algebraic compactness) have been extensively revised.

The new bibliography is limited to items to which there is an actual
reference. The bibliography in the first edition had 145 entries and
was intended to be complete up to about 1952. It would take over 400
additional entries to bring it up to 1968. It is doubtful whether the
space occupied by such a large bibliography would be well spent.

The guide to the literature is omitted, but relevant parts have been
incorporated into the new section of notes. For some things, e.g. my
views on duality, the reader should consult the first edition.

I urge the reader to have Fuchs’s definitive treatise at hand. My
feeling is that there is nevertheless still room for a slim volume, not
so imposing, gentle, and talkative (at least in the beginning).

I take the opportunity to disagree mildly with Professor Fuchs
about the role of modules. In the applications of algebra (notably to
topology), very general rings and modules over them are increasingly
important. I stand by the compromise in Infinite Abelian Groups:
start with familiar plain old abelian groups and switch completely to
modules over principal ideal rings at about the half-way point.

In the appended notes there is indeed a good deal of exploration of
modules, combined with remarks appropriate to a second look at the
subject. These require from the reader some familiarity with the rudi-
ments of commutative ring theory and homological algebra.

I am indebted to Peter Crawley, Alfred Hales, Charles Megibben,
and Joseph Rotman for spirited comments on a draft of the second
edition. Professor Fuchs kindly took time out from the preparation of
his own second edition to send me valuable suggestions. In addition to
the Office of Naval Research, whose aid was acknowledged in the first
edition, I am happy to thank the Army Research Office, the Air Force
Office of Scientific Research, and the National Science Foundation
for their support over the years. Thanks also to Joyce Bolden for a
splendid job of typing.

Chicago, I11. May 1968
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INFINITE ABELIAN GROUPS

1. INTRODUCTION

In the early days of group theory attention was confined almost en-
tirely to finite groups. But recently, and above all in the last two
decades, the infinite group has come into its own. The results obtained
on infinite abelian groups have been particularly penetrating. This
monograph has been written with two objectives in mind: first, to make
the theory of infinite abelian groups available in a convenient form to
the mathematical public; second, to help students acquire some of the
techniques used in modern infinite algebra.

For this second purpose infinite abelian groups serve admirably.
No extensive background is required for their study, the rudiments of
group theory being sufficient. There is a good variety in the transfinite
tools employed, with Zorn’s lemma being applied in several different
ways. The traditional style of transfinite induction is not completely
ignored either, for there is a theorem whose very formulation uses
transfinite ordinals. The peculiar role sometimes played by a count-
ability hypothesis makes a challenging appearance.

It is furthermore helpful that finite abelian groups are completely
known. In other subjects, such as rings or nonabelian groups, there
are distracting difficulties which occur even in the finite case. Here,
however, our attention is concentrated on the problems arising from
the fact that the groups may be infinite.

With a student audience in mind, I have given details and included
remarks that would ordinarily be suppressed in print. However, as the
discussion proceeds it becomes somewhat more concise. A serious
effort has been made to furnish, in brief space, a reasonably complete
account of the subject. In order to do this, I have relegated many re-
sults of some interest to the role of exercises, and a large part of the
literature is merely surveyed in the guide to it provided in §20.

This material is adapted from a course which I gave at the Univer-
sity of Chicago in the fall of 1950. I should like to record my indebted-
ness to the many able members of that class, particularly to George
Backus, Arlen Brown, and Roger Farrell. Thanks are expressed to
Isidore Fleischer for the ideas in §16 (the torsion-free case of
Theorem 22 was discovered by him and appears in his doctoral disser-
tation); to Robert Heyneman and George Kolettis, who read a prelimi-
nary version of this work and made many valuable suggestions; to Tu-
lane University and the University of Michigan, where I had the oppor-
tunity to lecture on abelian groups; and to the Office of Naval Research.

A special acknowledgment goes to Professor Reinhold Baer. It was
from his papers that I learned much of the theory of abelian groups.
Furthermore, when this monograph was nearly complete, I haq the

.




2 INFINITE ABELIAN GROUPS

privilege of reading an unpublished manuscript (of book length) on
abelian groups which he prepared in the late 1940’s.

2. EXAMPLES OF ABELIAN GROUPS

Before beginning to develop the theory, it is desirable to have at
hand a small collection of examples of abelian groups.

To avoid endless repetition, let it be agreed that “group” will always
mean “abelian group.”

(@) Cyclic groups. A group G is cyclic if it can be generated by a
single element. If that element has infinite order, G is isomorphic to
the additive group of integers, and is called an infinite cyclic group; if
it has finite order n, G is cyclic of order n and is isomorphic to the
additive group of integers mod n. We shall use the notation Z and Z,
respectively for these two groups.

() External direct sums. Let {Gi} be any set of groups, where the
subscript i runs over an index set I, which may be finite or infinite,

We define the divect sum of the groups G;. We take “vectors” {aj}; that
is, arrays indexed by i € I with a; in G;. Moreover, we impose the re-
striction that all but a finite number of the a;’s are to be 0 (we are writ-
ing 0 indifferently for the identity element of any G;). Addition of vec-
tors is defined by adding components. This gives an abelian group,
called the direct sum of {G;}.

If there is any danger of ambiguity, the object just defined may be
referred to as the “weak,” or “discrete,” direct sum, as opposed to the
“complete” direct sum, where the vectors are unrestricted. In pure’
algebra it is the weak direct sum which arises most naturally; the com-
plete direct sum is, indeed, mostly useful as a source of counterexam-
ples (see Theorem 21 and exercise 33).

(c) Union and intersection. If S and T are subgroups of a group, we
write S N T for their intersection, that is, the set of elements lying in
both. More generally, if {S;} is a set of subgroups of G, we write ns;
for the intersection. Note that we are talking about the set-theoretic
intersection and that it is always a subgroup.

As regards the union of subgroups, the situation is different. Con-
sider first two subgroups, S and T. The set-theoretic union, which we
might write S U T, is not generally a subgroup (in fact, S U T is a sub-
group if and only if one of the two subgroups S and T contains the other).
What we wish instead is the smallest subgroup containing S and T, and
this is provided by S + T, the set of all elements s + t, where s and t
range over S and T.

Again, let {S;} be any set of subgroups of G. Their union, written
ZS;, is the smallest subgroup containing them; it may be explicitly de-
scribed as the set of all finite sums of elements extracted from the
various subgroups S; .
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(d) Internal direct sums. In dealing with direct sums we are most
often confronted with the problem of showing that a group is isomor-
phic to the direct sum of certain of its subgroups. Suppose first that
the group G has subgroups S and T satisfyingS n T =0,S+ T =G.
Then it is easy to see that G is isomorphic to the direct sum of S and
T, where we are referring to the external direct sum discussed above
in (b). One may speak of G as being the internal direct sum of § and
T, but generally one simply calls G the direct sum of S and T, and
writes G=S® T.

Consider now any (finite or infinite) set of subgroups {S;}. In
order to verify that G is the direct sum of these subgroups, the most
convenient procedure is generally as follows: Show that G = Z'S;, that
is, that every element of G can be written as a finite sum of elements
from the subgroups S;; then show that the representation is unique.
This uniqueness is equivalent to the statement that each S; is disjoint
from the union of the remaining ones.

In general, if the union rS; of subgroups is their direct sum, we
shall call the subgroups S; independent.

A concept of independence for elements will also be useful: We
shall say that the elements x;j are independent if the cyclic subgroups
they generate are independent in the sense just defined, and we write
X(x;) for the subgroup generated by all the elements.

We should notice the analogy between this concept and linear inde-
pendence in a vector space. In fact, the elements x; are independent if
and only if the following is true: If a finite sum

Znix; =0 (n; integers),

then each n;x; = 0.

(e) Rational numbers. The most general group so far in our pos-
session is a direct sum of cyclic groups. A classical theorem asserts
that this covers all finitely generated groups, and in particular all finite
groups. That is to say, any finitely generated group is a direct sum of
(a finite number of) cyclic groups.

One might for a moment think that perhaps any abelian group is a
direct sum of cyclic groups, the number of summands now being al-
lowed to be infinite, of course. This conjecture is defeated by a very
familiar group: the additive group R of rational numbers. That R is
not a direct sum of cyclic groups may be seen, for example, from the
fact that for any x € R and any integer n there exists an element y € R
with ny = x; this property manifestly cannot hold in a direct sum of
cyclic groups. (The property in question is called divisibility, and will
be studied in §5.)

(f) Rationals mod one. In the additive group R of rational numbers,
there is the subgroup Z of integers. The quotient group R/Z is known
as the 7rationals mod one. We note that in R/Z every element has
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finite order. We argue, just as above, that R/Z is not a direct sum of
cyclic groups.

(8) The group Z(p=~). There is an important modification of the two
preceding examples. Let p be a fixed prime, and let P denote the addi-
tive group of those rational numbers whose denominators are powers of
p. The quotient group P/Z will play a dominant role in the ensuing dis-
cussion, and we use for it the notation Z(p*).

Let us pause to take a close look at Z(p=). For simplicity we take
p = 2. We can write the elements of Z(2®) as 0,1/2,1/4, 3/4, 1/8,
etc., but it is to be understood that addition takes place mod one. Thus

1/2+1/2=0, 1/2 + 3/4 = 1/4, 3/4 + 5/8 = 3/8, etc.

What are the subgroups of Z(2*)? There is a subgroup of order 2 con-
sisting of 0 and 1/2; one of order 4 consisting of 0, 1/4, 1/2, 3/4; and
in general a cyclic subgroup (say Hy) of order 2™ generated by 1/2%,

It is not difficult to see that these are in fact the only subgroups. Thus
the array of subgroups can be pictured as follows:

0OcH cHC-.CH, C... ¢ Z(2%).

It is noteworthy that every subgroup of Z(2%) is finite, except for Z(2%)
itself. The subgroups form an ascending chain which never terminates.
On the contrary, one sees that every descending chain of subgroups
must be finite. Thus Z(2*) has the so-called descending-chain condi-
tion” but not the “ascending-chain condition.”
In conclusion, we give another realization of Z(p®). Consider the

set of all p”-~th roots of unity, where p is a fixed prime andn =0, 1, 2,

These numbers form a group under multiplication, and the group
is isomorphic to Z(p®).

This completes our discussion of examples. It will appear that
these groups are the fundamental building blocks for some fairly wide
classes of infinite abelian groups.

3. TORSION GROUPS

If an abelian group has all its elements of finite order, we shall
call it a forsion group. (This designation does not convey much alge-
braically, but it has a suggestive topological background and the merit
of brevity.) The other extreme case is that where all the elements
(except 0 of course) have infinite order; we then call the group Zorsion-
Sree.

Now let G be an arbitrary abelian group, and T the set of all ele-
ments in G having finite order. We leave to the reader the verification
of the following two remarks: (a) T is a subgroup, (b) G/T is torsion-
free. We shall call T the torsion subgroup of G.
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The study of abelian groups is now seen to split into three parts:

(a) the classification of torsion groups, (b) the classification of torsion-
free groups, (c) the study of the way the two are put together to form an
arbitrary group. Progress has been most notable on the first of these
problems, and consequently we shall be chiefly concerned with torsion
groups.

Next we define a group (necessarily a torsion group) to be primary
if, for a certain prime p, every element has order a power of p. The
study of torsion groups is reduced to that of primary groups by the
following theorem:

Theovem 1. Any torsion group is a dirvect sum of primary groups.

Proof. Let G be the group, and for every prime p define Gy, to be
the subset consisting of elements with order a power of p. It is clear
that G is a subgroup, and that it is primary. We shall now prove that
G is isomorphic to the direct sum of the subgroups Gy,.

(a) We have first to show that G is the union of the ‘subgroups Gp.
Take any x in G, say of order n. Then factor n into prime powers:
= @i Tk i - G =
n=p?! .. pS and writen; = n/p;* (i = 1, ---, k). Thus n;, --+, ny
have greatest common divisor 1, and so there exist integers a,, --- , ax
with ajn, + --+ + ayny = 1. Then

(1) X = amX + -+ + 2 ngX.

Now njx has precisely order pirl, and so it is in Gp;. Thus equation (1)
is the desired expression of x as a sum of elements in the G.’s.

(b) We have further to prove the uniqueness of the expression just
found. Suppose

X =Y, + - +¥
= zZy ot 2y

where y;, z; lie in the same GPi‘ Consider the equation
(2) Vo= 2= (2 + s+ zg) - (yp + o+ ¥

We know that y, - z, has order a power of p,. On the other hand, the
right side of (2) is an element whose order is a product of powers of

Py, ***, Px. This is possible only if y, - z, = 0. Similarly each y; = z;.
This completes the proof of Theorem 1.

As a general principle, every decomposition theorem should be ac-
companied by a uniqueness investigation. Such an investigation is par-
ticularly easy for the decomposition given by Theorem 1. In fact, there
is only one way to express a torsion group as a direct sum of primary
subgroups, one for each prime p; for the subgroup attached to p must
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necessarily consist of all elements whose order is a power of p. In
other words, the decomposition is unique not just up to isomorphism;
the summands are unique subgroups.

The simplicity of the proof of Theorem 1 is a natural counterpart
to this strong uniqueness; for if a decomposition is unique there ought
to be a simple natural way to effect it. It is instructive to compare
this situation with later ones. For example, under suitable hypotheses
of various kinds we shall prove that a primary group is a direct sum of
cyclic groups; this decomposition is unique, but only up to isomorphism.
The difficulties encountered in the proof are a natural reflection of the
large number of arbitrary choices that have to be made in carrying out
the decomposition.

We shall conclude this section by giving two illustrations of
Theorem 1:

(a) Consider the cyclic_group Z(n), where n = p,* pkk Then
Z(n) = Z(pl He ... Z(pkk) (Indeed this is the fact wh1ch really
underlies the proof of Theorem 1.)

(5) Let G be the additive group of rationals mod one (§2). This is
a torsion group, and it can be seen that its primary component for the
prime p is precisely the group Z(p*) of §2. Thus G is a direct sum of
all the groups Z(p™).

4. ZORN’S LEMMA

Nearly every proof to follow will depend on the use of a transfinite
induction. Such an induction is generally best accomplished by the use
of Zorn’s lemma, which is to be regarded as an axiom like other axioms
needed to set up the foundations of mathematics.

We shall make use of a version of Zorn’s lemma which refers to
the concept of a partially ordered set. A partially ordered set is a set
with a binary relation > which satisfies

(@) x > x (reflexivity),
() x >y, y>x imply x=y (antisymmetry),
() x>y, y>2z imply x >z (transitivity).

Let S be a partially ordered set and T a subset. The element x is
said to be the least upper bound of T if x > y for every y in T and if
z 2 y for every y in T implies z = x. (The element x itself may or
may not be in T.) A least upper bound need not exist, but if it does,
it is unique.

An element x of a partially ordered set S is said to be maximal if S
contains no larger element. It is to be observed that S may contain
many maximal elements.

A partially ordered set is a chain (also called a simply ordered set
or a linearly ordered set) if every two elements are comparable; that
is, either x > yory = x.
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We now state Zorn’s lemma:

Zorn's lemma. Let S be a partially ordered set in which every
chain has a least upper bound. Then S has a maximal element.

This brief account will suffice for the applications we shall make of
this lemma. We refer the reader to the literature for details on other
forms of Zorn’s lemma, and their equivalence to the well-ordering
axiom or the axiom of choice.

5. DIVISIBLE GROUPS

In an abelian group any element may be multiplied by an integer.
But what about dividing by an integer? The answer is that the result
may not exist, and if it exists, it may not be unique. So we shall not

attempt to attach a meaning to the symbol %x, but nevertheless we shall
say that x is divisible by n if there exists y with ny = x.

Examples. (a) The element 0 is divisible by any integer.

(b) If x has order m, then it is divisible by any integer prime to m.

(c) In the additive group of rational numbers, every element is di-
visible by every integer.

In this section we are going to study groups which share this last
property with the additive group of rational numbers.

Definition. A group G is divisible if for every x in G and every
integer n there exists an element y in G with ny = x.

Alternatively, G is divisible if G = nG for every integer n.

We note that a cyclic group is not divisible. Nor for that matter is
a direct sum of cyclic groups. Indeed, it is clear that a dirvect sum of
groups is divisible if and only if every summand is divisible. Another
easily verified fact 1s that a homomorphic image of a divisible group is
divisible. So we note that the group of rationals mod one is divisible,
since it is a homomorphic image of the additive group of rationals.

The group Z(p™) is also divisible. This is not apparent from the
definition (§2) of Z(p>®) as P/Z, since P (the group of rationals with
denominator a power of p) is not divisible. If we admit, as was claimed
at the end of §3, that Z(p*) is a direct summand of the rationals mod
one, then the divisibility of Z(p®) is assured. But let us give a direct
argument. Since Z(p™) is a primary group, all of its elements are di-
visible by any integer prime to p. On the other hand, it is clear that
every element of Z(p™) can be divided by arbitrary powers of p. On
putting these two statements together, we establish that Z(p®) is
divisible.

The theory of divisible groups is based on the theorem below. It is
to be understood that by a “divisible subgroup” we mean a subgroup
which as a group on its own merits is divisible. In other words, for H
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to be a divisible subgroup of G, it has to be the case that for every
h € H, and every integer n, there exists an element h, again in H,
satisfying nh;, = h.

Theorvem 2. A divisible subgroup of an abelian group is a divect
summand.

Proof. Let H be a divisible subgroup of G. Our task is to find a
subgroup K with Hn K = 0, H + K = G. Offhand, it probably seems
difficult to imagine how to go about finding such a subgroup. It is
rather remarkable that a crude use of Zorn’s lemma accomplishes the
objective.

We consider the set ¢ of all subgroups L which satisfy H n L. = 0.
(There is at least one, namely, 0.) We would like to get one as large
as possible. So we set out to get a maximal element in . We partially
order ¢ by set-theoretic inclusion. To use Zorn’s lemma, we have to
verify that every chain in & has a least upper bound. Suppose {L;} is
a chain in g. To get the desired least upper bound, we simply take the
set-theoretic union of the Li’s, say M. Three things need to be veri-
fied:

(@) M is a subgroup. We take x and y in M and have to show that
X - y is in M. Now x and y got into M only because x was, say, in Lj,
y in L;. Moreover, L; and Ljare comparable, say L; € L;. Then poth
x and y are in Lj, and so is x - y. Hence x - y is in M.

() Hn M = 0. This follows from the fact that every element of M
is in one of the L;j’s, and each H n L; = 0.

(c) M is the least upper bound of { L;}. This is clear.

We remark that the arguments above are of a routine nature. In-
deed the whole would usually be condensed to: “By Zorn’s lemma pick
a subgroup maximal with respect to disjointness from H.” In the future
we shall give such a condensed version. But the reader should observe
that there is one vital point which must be checked before Zorn’s lemma
is applicable—that the property of disjointness from H is preserved
under taking of least upper bounds of chains.

At any rate, we now have a maximal subgroup K in ¢, and we set
out to prove H + K = G. We suppose the contrary. Then there exists
an element x which is not in H + K. A fortiori, x is not in K. We now
form K', the subgroup generated by K and x. K'is larger than K, and,
in fact, K' consists of all lelements k + nx where k is in K and n is an
integer. By the maximality of K we know that H n K' # 0. Hence
there exists a nonzero element h in H n K":

(3) h =k + nx.
From equation (3) we see that nx is in H + K. It is interesting to ob-

serve that we have not yet used the divisibility of H. In other words,
we have proved that if we take any subgroup H and a maximal subgroup
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K disjoint from it, then H + K is at any rate large enough so that
G/(H + K) is a torsion group.

Now to complete the proof. We may suppose that n is the smallest
positive integer such that nx € H + K (of course n > 1), Letpbea
prime dividing n, and write y = (n/p)x. Thus y is not in H + K, but
py = nx = h - k. By the divisibility of H we may write h = ph,, with
h € H. Letz =y - h,. ThenzisnotinH + K, but pz = -k is in K.
We now repeat the argument above; when we adjoin z to K we must get
a subgroup not disjoint from H. Hence we have

(4) h, = k, + mz

where h, € H, h, # 0, k, € K, and m is an integer. It is impossible that
m be a multiple of p, for then the right side of equation (4) is in K,
while the left side is a nonzero element of H. Hence m is prime to p,
and we may find integers a, b such that am + bp = 1. We have

z = amz + bpz € H + K, a contradiction. This completes the proof of
Theorem 2.

It is worth while to take another glance at the mechanism of the
preceding proof. A transfinite induction contains two steps: a passage
to the limit, and an argument for pushing one stage further. The first
step was accomplished above by the initial application of Zorn’s lemma.
The second was concealed in an indirect proof, but it is perfectly pos-
sible to rewrite this as a direct proof. It is rather typical of the use
of Zorn’s lemma that it culminates in an indirect argument.

We proceed to a useful theorem applying to an arbitrary group G.
In G consider the totality of divisible subgroups and form their union M
(this is one of the rare occasions when we could correctly construe M
to be the set-theoretic rather than the group-theoretic sum, for there
is actually a largest subgroup among them). Now M consists of finite
sums X; + °* + X where each x; lies in some divisible subgroup.
Since each x; is divisible by n (for arbitrary n), so is the sum. Thus M
is itself a divisible group. We have proved the first statement of the
following theorem:

Theorem 3. Any abelian group G has a unique largest divisible sub-
group M, and G = M@ N where N has no divisible subgroups.

To prove the last statement of Theorem 3 we quote Theorem 2 and
deduce that M is a direct summand of G. The other summand N can
have no divisible subgroups, for these would be divisible subgroups
of G.

The subgroup M is uniquely determined, for it is intrinsically char-
acterized as the maximal divisible subgroup. Suitable examples show
that N is not necessarily unique. Of course, N is unique up fo isomor-
DPhism, for it is isomorphic to G/M.

Theorem 3 suggests the following definition:
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Definition. An abelian group is reduced if it has no (nonzero) divis-
ible subgroups.

To classify all abelian groups it suffices by Theorem 3 to do the
divisible and reduced cases. We proceed at once to a complete deter-
mination of divisible groups. After this has been done, it will usually
be possible to restrict our attention to reduced groups.

Theorvem 4. A divisible abelian group is a dirvect sum of groups
each isomorphic to the additive group of rational numbers or to Z(p™)
(for various primes p).

Proof. Let G be the group, T its torsion subgroup. It is easy to
verify that T is again divisible. By Theorem 2, G = T © F where F is
isomorphic to G/T, and so is divisible and torsion-free. We now study
T and F separately.

The discussion of F is easy to carry out directly, but it will clarify
the situation to relate it to standard vector space theory. Let x be any
element in F, and n a nonzero integer. Then, since F is divisible and
torsion-free, there is exactly one element y in F with ny = x. Thus we

: ; 1 .
can attach a unique meaning to (H)x, and then to rx, where r is a ra-

tional number. Now it is routine to check the requisite postulates, and
we conclude that F is a vector space over the field of rational numbers.
Any vector space (whether finite or infinite-dimensional) has a basis.
Translated into group-theoretic terms, this says that F is a direct sum
of groups each isomorphic to the additive group of rational numbers.

We turn our attention now to the divisible torsion group T. By
Theorem 1, T is a direct sum of primary groups, each of which will
again be divisible. So we may as well assume that T itself is a pri-
mary group (say for the prime p), and we have to prove that T is a
direct sum of groups isomorphic to Z(p*).

A little care must be exercised in applying Zorn’s lemma for this
purpose. We consider subgroups of T isomorphic to Z(p*). Of course
it is not clear at the moment that any such subgroups exist, but this is
something to worry about later. Since the objective is to express T as
a direct sum of such subgroups, it is appropriate to consider independ-
ent sets of these subgroups. So we decide to form ¥, the set of all
independent sets of subgroups isomorphic to Z(p*). It should be borne
in mind that each element of P is an independent set of subgroups, that
is to say, a set of sets; so P is a set of sets of sets! We introduce in
P the natural ordering given by set-theoretic inclusion. The proof
that every chain in $ has a least upper bound offers no difficulty. Thus
we may apply Zorn’s lemma to arrive at a maximal independent set of
subgroups isomorphic to Z(p*), say {S;}. Write S = £S;. The proof
will be finished if we show S = T. In any event, S is a divisible group
(being a direct sum of divisible groups), and so T = S & R by Theorem
2. Now we come to the crux of the proof. If R # 0, we shall show that
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R contains a subgroup isomorphic to Z(p™); by adjoining this subgroup to
{Si} we get a contradiction, for the enlarged set of subgroups is still
independent.

We select in R an element x, of order p. Using the divisibility of R,

we find in succession elements x,, x,, --- with px, = x, px; = X, -,
and in general px;,, = x;. Now map x, into 1/p, x, into 1/p?, .. , X;
into 1/p*, --- . This gives rise to an isomorphism between the subgroup

generated by the x’s and the group Z(p*), and completes the proof of
Theorem 4.
We conclude this section with two remarks:

(@) The particular way in which Zorn’s lemma was applied deserves
comment, It would perhaps have seemed more natural to consider all
subgroups which are direct sums of groups isomorphic to Z(p*), and
proceed to use Zorn’s lemma to get a maximal one. But there is a
catch: Why should the union of an ascending chain of these subgroups
be expressible as a direct sum of Z(p*)’s? It is true that each sub-
group in the chain will have such an expression, but these expressions
will presumably be unrelated, and it is impossible to combine them. It
was to obviate this difficulty that we chose the fussier formulation
above.

(b) The uniqueness question that arises in connection with Theorem 4
also warrants attention. We are presented with a set of cardinal num-
bers: one for the number of rational summands, and then one for every
p giving the number of Z(p™) summands. It is a fact that these cardinal
numbers are invariants (and consequently, of course, a complete set of
invariants). For the rational summands this is simply a restatement
of the invariance of the number of elements in a basis of a vector space,
a fact which we shall take for granted. For the Z(p*®) summands the
question of uniqueness of the cardinal number can be rapidly reduced
to the case of a vector space: all we have to do is drop down to the sub-
group of all elements x satisfying px = 0 (this being a vector space
over the field of integers mod p).

For an alternative approach to Theorems 2 and 4 the reader is re-
ferred to exercises 1-4.

Exercises 1-8

1. Let G be a group, H a subgroup, D a divisible group. Let f be a
homomorphism of H into D. Show that f can be extended to a homo-
morphism of G into D. (First study the task of extending f to the sub-
group of G generated by H and one more element; it turns out that the
divisibility of D always makes this possible. It remains to prepare the
way for applicacion of Zorn’s lemma. This may be done as follows:
Consider pairs (Sj, f;), where S; is a subgroup of G containing H, and
f; is an extension of f. Partially order these pairs by decreeing that
(81, f) = (8j, f;) means that S; 2 Sj and that f; is an extension of f;.
Apply Zorn’s lemma.)



