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1

Overview

In this book we explore the use of linguistic variables as a semiquantita-
tive extension to the qualitative value and relationship representations in
qualitative process theory, for application in fuzzy logic control. Qualita-
tive process (QP) theory, developed by Kenneth Forbus, describes the form
of qualitative theories about the dynamics of physical systems. Its central
thesis is that all change in such systems is the result of active processes, and
that these processes should be explicitly represented and reasoned about.
Much of QP theory’s power derives from the qualitative representations
used for the values of individual continuous-state parameters and the re-
lations between these parameters. Qualitative descriptions are important
because they provide the ability to reason with incomplete information and
can guide the application of more detailed quantitative theories when ad-
ditional information is available. Forbus has demonstrated that QP theory
can be used to derive many significant deductions given only weak qual-
itative descriptions of variable values and relationships. For example, QP
theory can be used to determine that the water in Fig. 1.1 will heat up and
eventually boil, and that the container may eventually explode. However,
there are at least three limitations to the current ability to analyze this
situation using QP theory:

1. QP theory cannot be used to estimate how likely it is that there will
be an explosion.

2. QP theory is unable to analyze situations only slightly more compli-
cated than the one shown. For example, if we include a model for heat
loss from the container to the surrounding environment, QP theory
can no longer predict whether or not the water will boil.

3. QP theory provides little basis for reasoning about continuous control
actions; for example, how much or when should the heat be turned
down to avoid explosion?

We show that QP theory can be extended through the use of linguistic
variables [Zad75a] to characterize both quantity magnitudes and necessary
aspects of functional relationships. These extensions can reduce the ambi-
guity of QP analyses in terms of both the number of possible situations
that may be occurring and the magnitude, time scale, etc., over which sit-
uations occur. These extensions reason at the appropriate level of detail for
the kinds of questions typically asked in reasoning about the control of en-
gineered systems; they are computationally tractable and can reason with
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FIGURE 1.1. Boiling Example, after Forbus [For84].
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the imprecise or uncertain data typically available to real-world control sys-
tems. These extensions are motivated by an examination of the potential
use of QP theory in reasoning about the control of an engineered physical
system, a chemical reaction furnace. Examination of the detailed model
reveals a number of limitations similar to those listed. The source of these
limitations is then traced to the restricted model of naive mathematics
contained in QP theory. The proposed extensions to this mathematics are
then described and demonstrated to be capable of eliminating many of the
limitations at the price of requiring additional system-specific information
about the system being modeled.

The three extensions presented in this book are based on the notion of
a linguistic variable. First, an extension to the truth values and quantity
ordering relations in QP theory enables representation of uncertain mea-
surement data and estimates of state likelihoods. Second, an examination
of qualitative characterizations of functional relationships reveals a number
of possible extensions to the qualitative proportionality and influence re-
lations of QP theory. One in particular, relationship strength, is shown to
be capable of resolving some of the ambiguity that arises when attempting
to apply QP theory to complex situations. Finally, an extension theory for
the quantity representations used by QP theory, when combined with the
other described extensions, provides estimates of the quantitative effects
of adjustments to continuous control parameters. Much of the information
required to improve the specificity of the results of applying QP theory is
physical system, state, or even query specific. The work presented here is
based on the hypothesis that problem solving does not proceed by choosing
a single representation and manipulating it until a solution is found, but
rather by choosing an initial representation, performing some initial prob-
lemsolving, “patching” the representation in response to problems encoun-
tered, and again resuming problem solving. This cycle may iterate several
times before a satisfactory solution is reached. “Patches” are applied on
the basis of the problems encountered and the query being asked, and are
drawn from sources of information outside the theory being applied. We do
not address the source of this external information here, but some initial
explorations of this question are described in [D’A85].

Chapter 2 introduces the basic notions of fuzzy logic control. Chapter 3
provides a review of QP theory, including background and related research.
Chapter 4 then presents an example, in which QP theory is used to analyze
a simple continuous-flow industrial chemical system. Chapter 5 examines
the results of this analysis, identifies certain limitations of QP theory in
reasoning for process control, and analyzes the sources of those limitations.
Chapter 5 ends with a description of an approach to addressing these lim-
itations using linguistic variables. Chapter 6 provides some basic review
material on linguistic variables, and presents some of the basic machinery
needed to support the deductions used in later work. Chapter 7 introduces
the concept of a linguistic quantity space, and show it integrates multiple
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representations of quantity information. Chapter 8 examines the problem
of characterization of functional relationships. A number of different kinds
of characterizations are identified, and one in particular, the notion of rela-
tionship strength, is shown to be capable of resolving one of the undecidable
questions exposed in the example in chapters 4 and 5. Chapter 9 discusses
the problem of estimating the effects of adjustments to continuous control
parameters and presents linguistic perturbation analysis, a technique for
producing these estimates for a wide class of situations. Finally, Chapter
10 summarizes the work presented here, compares it with related work, and
outlines possibilities for further research.
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Fuzzy Logic Control

2.1 Classical Control Theory

In this chapter we review previous results in the effort to incorporate ap-
proximate reasoning into the control of physical processes. In particular,
we wish to review the research in fuzzy logic control and show how the
research presented here is a logical extension of that work. Fuzzy control is
an outgrowth of classical control theory, so we start with a brief review of
classical control.

Control ,
Algorithm -
Control Sensor
Variables Variables
> Process
Inputs N\ \ Outputs
7 /

FIGURE 2.1. Classical Model of Process Control

As shown in Fig. 2.1, classical control theory is concerned with four basic
components: the process to be controlled, a set of process parameters that
can be observed (the sensor or control system input variables), a second set
of process parameters that can be directly controlled (called the control or
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control system output variables), and a control algorithm that transforms
sets of sensor variable observations into sets of control variable settings.
The control algorithm is derived from a model of the process to be con-
trolled. When the model is accurate and the control algorithm derivation
performe(d correctly, the performance and stability of the control algorithm
can be guaranteed within known limits. Control theory is well known and
understood, and is the control mechanism of choice when applicable. How-
ever, in many situations, classical control theory may not be applicable for
several reasons:

1. There may be no complete model of the process, or available models
may be too complex or make unacceptable assumptions.

2. Control algorithms derived by classical techniques do not respond
well to noise in sensor variable measurements [Mur85].

3. The stability and performance available from classical control algo-
rithms may not be adequate for the requirements of the task at hand.

2.2 A New Approach to Control of Complex
Systems

Fuzzy logic control was developed to overcome some of the problems cited
above. Research on fuzzy control is an outgrowth of a landmark paper by
Zadeh [Zad73] outlining a new approach to decision making in complex
domains. This approach is based on the principle of incompatibility:

.. as the complexity of a system increases, our ability to
make precise yet significant statements about its behavior di-
minishes until a threshold is reached beyond which precision
and significance (or relevance) become almost mutually exclu-
sive characteristics.!

In this paper Zadeh introduced the linguistic variable to provide approx-
imate descriptions of significant parameter values, the fuzzy conditional
statement to provide for descriptions of simple relationships between lin-
guistic variables, and the fuzzy algorithm to describe more complex relation-
ships. Briefly, a linguisitic variable is a variable whose value is represented
as a possibility distribution over a value space (for more details see Chap-
ter 7). Fuzzy algorithms are constructed from fuzzy assignment and fuzzy
conditional statements. Particularly relevant in the context of fuzzy control
is the fuzzy relational algorithm introduced in [Zad73]. A fuzzy relational
algorithm describes the relationship between fuzzy variables and is defined

1See [Zad73], p. 28.
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as a set of conditional statements. Fuzzy relational algorithms can express
the relationship between two or more variables, as well as the relationships
between different aspects of the variables involved. Following is an exam-
ple from [Zad73] describing the relationship between the value and first
derivative of the variable x and the first derivative of the variable y:

Algorithm F(x, y):
1. If z is small and z is increased slightly, then y will increase
slightly.
2. If z is small and z is increased substantially, then y will
increase substantially.

3. If z is large and z is increased slightly, then y will increase
moderately.

4, If z is large and z is increased substantially, then y will
increase very substantially.

In the case in which multiple rules apply, each serves to restrict the
possible value of the consequent, and therefore Zadeh recommends that
the proper combining rule is to intersect the results.

2.3 Fuzzy Control

Mamdani [MA75], [Mam?76] was the first to apply the ideas presented in
Zadeh’s paper to the problem of process control. Mamdani encountered
the problem that classical control theory was often inapplicable, usually
because of lack of a suitable formal model of the process. However, there
was available a large body of vague, nonnumeric information about how
to control the process of interest, a simple steam engine in his first study.
Mamdani found that fuzzy relational algorithms provided a direct represen-
tation for this knowledge, and that the defined semantics of fuzzy relational
algorithms, when applied to these representations, determined control ac-
tions that corresponded with the control actions performed by skilled op-
erators. The new model of control proposed by Mamdani is shown in Fig.
2.2 and is considerably different from the standard model of control.?
The process, sensor parameters, and control parameters are as before.
Sensor readings, which are assumed to be nonfuzzy, must be converted to
fuzzy set form, and this occurs in a process called fuzzification. The def-
initions of the fuzzy predicates are stored in a database associated with
the controller. The linguistic control knowledge is stored as a set of fuzzy
conditional statements in a rule-base and can be seen as specifying a fuzzy

2Figure adapted from [Ton84].



