SOCIETA ITALIANA DI FISICA

RENDICONTI

DELLA

SCUOLA INTERNAZIONALE DI FISICA «ENRICO FERMI»

LXIII Corso

Nuove Tendenze dell'Acustica Fisica

SOCIETÀ ITALIANA DI FISICA - BOLOGNA (ITALY)

p578.2 7863530 1974 SOCIETA' ITALIANA DI FISICA

RENDICONTI

DELLA

SCUOLA INTERNAZIONALE DI FISICA «ENRICO FERMI»

LXIII Corso

a cura di D. SETTE Direttore del Corso

VARENNA SUL LAGO DI COMO VILLA MONASTERO 5-17 AGOSTO 1974

Nuove Tendenze dell'Acustica Fisica

SOCIETÀ ITALIANA DI FISICA BOLOGNA - ITALY PUBLISHER: SOCIETÀ ITALIANA DI FISICA - BOLOGNA

SOLE DISTRIBUTORS: NORTH-HOLLAND PUBLISHING COMPANY AMSTERDAM - NEW YORK - OXFORD

ISBN NORTH-HOLLAND 0720404894

Copyright © 1976, by Società Italiana di Fisica Proprietà Letteraria Riservata Printed in Italy

ITALIAN PHYSICAL SOCIETY

PROCEEDINGS

OF THE

INTERNATIONAL SCHOOL OF PHYSICS « ENRICO FERMI »

Course LXIII

edited by D. SETTE Director of the Course

VARENNA ON LAKE COMO
VILLA MONASTERO
5th-17th AUGUST 1974

New Directions in Physical Acoustics

1976

Preface.

D. Sette

Istituto di Fisica della Facoltà d'Ingegneria dell'Università - Roma

Recent years have witnessed a genuine flourishing of research in acoustics. The close connection of acoustics with other fields of physics has always given acoustics a strong interdisciplinary character, so that specialists in other branches of science have traditionally entered into an involvement into acoustic research.

The summer course of the E. Fermi School of the Italian Physical Society, New Directions in Physical Acoustics, has been conceived as a place for presenting and examining the physical aspects of a part of the current interdisciplinary research in acoustics.

The proceedings are openend by an essay on the *Historical Development* of *Physical Acoustics and Future Perspectives* by the distinguished scholar LINDSAY.

The material of the course can be grouped in three main areas: 1) sound propagation and the structure of matter, 2) propagation in fluctuating media of large dimensions (air, ocean), 3) nonlinear acoustics and surface waves.

In a large number of cases the interpretation of experiments on sound propagation requires the consideration of the co-operative collective nature of the molecular processes involved. Montrose's contribution on Correlation Functions in Molecular Acoustics gives the basic notions on time correlation functions, the elements of the linear theory for both cases of the response of an equilibrium system to external forces (Kubo method) and of the relaxation to equilibrium of a perturbed system (Mori theory). The results of this theoretical treatment are applied to sound propagation in dense fluids in the context of linearized hydrodynamics; the various kinds of relaxations are discussed. Some aspects of collective mode dynamics in fluids which are related to the study of sound propagation are pointed out, especially where they are closely connected with molecular dynamics.

Yip's lecture, *High-Frequency Short-Wavelength Fluctuations in Fluids*, is in a sense an application of Montrose's more general treatment to the nature of the sound processes which give rise to dispersion and absorption in the different regions of frequencies and wave numbers, with particular attention

D. SETTE

to the high-frequency and short-wavelength range. Three different regions are considered: 1) the hydrodynamics region where wavelengths are large compared with the mean free path, and frequencies small compared with collision frequency; 2) Knudsen region, where k and ω are very large, the effects of free-molecule flow predominate and sound propagation in the traditional sense does not occur; 3) kinetic, or transition, region where k and ω are of the orders of magnitude of the mean free path and the collision frequency. The third is naturally the most interesting both from the theoretical point of view and because of the striking experimental findings. In the lectures the kinetic model (simplified transport equations as an approximation to the Boltzmann equations) is used to extract normal-mode solutions for dilute gases and to show the existence for them of continuum modes in addition to the familiar discrete modes. The latter (among which the two sound modes) can disappear at sufficiently large k and ω . The analysis of the experiments of Greenspan and of MEYER and SESSEN in monoatomic gases is used to show the roles of the discrete and continuum normal modes.

In dense fluids the existence of significant spatial correlation among molecules give rise to restoring forces which allow collective motion even in the absence of collisions, *i.e.* even when the frequency of oscillation becomes large compared with the collision frequency. These collective modes which occur in the high-frequency region, called the collisionless regime, constitute the zero sound. The existence of such modes in a neutral classical fluid and its connection with the normal sound modes are discussed. The collective modes in liquids at short wavelengths (k comparable with the inverse intermolecular spacing) are considered by using a generalized viscoelastic description of density and current fluctuations.

The scattered light which emerges from a transparent medium illuminated by a monocromatic beam of light carries in its spectrum information on the dynamics of the scattering centres (molecules) and can be used to extract information on the acoustical modes of the density fluctuations and on the acoustical properties of the medium. The analysis of the experiments and the indications of the cases in which it confirms information also obtainable with ultrasonic experimentation are given by Montrose in his contribution on Light Scattering and Molecular Acoustics.

RUDNICK offers a thorough and up-to-date presentation of research on Sound Propagation in Superfluid Helium. The first part deals with a theoretical description of the various kinds of sounds and of their behaviour, while the second part is a comprehensive review of the relevant experiments carried on up to now.

The subject of Sound Propagation in Liquid Crystals is presented by Candau and Martinoty. The results of absorption measurements for both longitudinal and transversal waves in nematics are compared with the theoretical indications to derive various viscosity coefficients and elastic constants of ne-

PREFACE

matic liquid crystals; the relaxation processes in nematic and isotropic phases are discussed and some references to recent research in smectic liquid crystals are also included.

Mason's contribution on Acoustical Properties of Solids examines the application of sound waves in a wide frequency range to the study of many solid-state motions such as domain wall motion, point imperfection and dislocation motion. The author examines in detail the attenuation of sound waves in perfect crystals, the effects of structure in a solid (grain, domain wall, phase transitions) and the effect of imperfections (point defects, dislocations). Some consideration is also given to fatigue in metals and to the fast-developing field of acoustic emission.

CAROME has considered the special case of Superconducting Transducers in the 50 to 1000 GHz Range. He discusses the use of phonon fluorescent elements and tunnel junctions as phonon sources, as well as bolometers and tunnel junctions as phonon detectors.

A very comprehensive review of the method developed in the last ten years for the *Production and Detection of Very-High-Frequency Sound Waves* has been offered by Dransfeld. The treatment excludes the case of surface wave (see de Klerk's contribution). The production and detection of coherent phonons can be made in a variety of ways: a) piezoelectric methods in traditional transducers, in depletion layer transducers, in high-polymer transducers; b) magnetostrictive methods at microwave frequencies; c) electromagnetic generation at microwave ultra-sound; d) by scattering of light and X-rays (spontaneous or stimulated Brillouin scattering, X-ray scattering by phonons, Raman scattering by phonons, microwave-induced Raman scattering).

Jofffein and Levelut, in *Phonon Echoes*, have discussed a unique type of phonon echo experiment which looks promising both for physical application (measurements of sound absorption, of characteristic relaxation times) and for engineering applications (signal processing and memory devices). Here the term echo has to be taken with the same meaning that is applied to spin systems. A simple experiment consists in launching a pulse of coherent phonons into a specimen by means of a transducer (frequency ω_1) at time t=0, and in applying at time τ an electrical field of the same frequency to part of, or to the entire specimen. The nonlinear interaction between the electric field and the square of the elastic deformation creates reflected ultra-sonic waves (a reverse of the wave vector) which travel exactly in reverse of the previous waves and create an echo at the source position at time 2τ . The echo is independent of the specimen shape and of the source location.

The group of lectures related to sound propagation in fluctuating media of large dimension opens with the McCoy contribution: Wave Propagation in Random Media. It is concerned first with the analysis of the way in which a random medium can be statistically described per se and, second, with the propagation of an acoustic field; a two-point coherence function applicable to ocean studies is given special attention.

XVI

An analysis of the physical processes responsible for fluctuations of interest in sound propagation in the sea is the first part of the lectures offered by Goodman: Propagation in Fluctuating Media. The establishment and the characteristics of internal waves receive special attention in the discussion of the dynamics of the medium; turbulence plays an important role also; the sea suface behaviour and the connected capillary and gravity waves are considered in defining the dynamic properties of the sea, in the proximity of the surface. At greater depths, there exists the possibility of trapping the acoustic energy emanating from a source into a channel, allowing transmission over thousands of miles.

The results of some experiments on ocean dynamic fluctuations observed with the acoustical method are discussed. The experiments refer to propagation in the mixed layer where turbulence dominates the phenomena of fluctuations as well as to propagation to much larger depths. The reflection of waves from the sea surface is also discussed.

The third group of contributions includes Berktay's treatment of Finite-Amplitude Effects in Sound Propagation in Fluids, with special reference to water. The consequences of the nonlinearity of differential equations describing acoustic disturbances are examined in a lossless medium and successively in a thermoviscous medium. In the last case and with reference to sinusoidal boundary conditions the development of a «weak shock» wave form, the conservation of the «saw tooth» form and the saturation of the fundamental component of particle velocity at a given range are discussed. The analysis is then applied to the monochromatic radiation from a transducer.

Special attention is given to the parametric acoustic arrays where non-linear interactions of sound waves are used to produce low-frequency acoustic waves. The parametric transmitters which use two monochromatic primary waves in order to produce a wave at the difference frequency are shown to produce a low-frequency source with beam width of the same order as those of the primary transducers and a level suitable for sonar applications.

Stephens' contribution is a brief review of the last-decade interest on finite wave propagation in solids. After reference to a few positions of the higher-order elasticity theory, the nonlinear effects in wave propagation, resulting either from large wave amplitude or from induced as well as local nonlinear-ities of the medium, are discussed. Theoretical and experimental results are presented. Harmonic generation in piezoelectric crystals, optical-acoustical interaction in photoconducting piezoelectrics, nonlinearity in surface waves are considered. Research on surface waves in liquids, acoustical streaming, nonlinearities in cochlear hydrodynamics, scattering of sound by sound and on the relation between macrosonics and nonlinear effects in crystalline solids is also reviewed.

The great interest that surface waves have recently provoked for their many valuable applications has led to a frequent presentation of the subject in terms

PREFACE

of equivalent circuits of devices which are especially useful for engineers. This method, however, does not give much insight into the physics involved. DE KLERK has therefore developed A Physical Approach to Elastic Surface Waves. Both isotropic and anisotropic material are considered. An analytical method for the optimum in crystal orientations and propagation directions is presented. Moreover the effect of piezoelectric properties of the material on the action of interdigital grids on the surface and the basic principles of two surface wave devices are discussed.

A review of the present status of developments of the more interesting Surface Acoustic-Wave Devices is given by Atzeni and Masotti: interdigital transducers, delay lines, filters, oscillators, multistrip couplers, convolution using parametric interaction, interaction with light and display systems are considered in detail.

The proceedings are closed by a contribution by Wang on Acoustics in Space; the acoustical chamber developed for manipulating and controlling a liquid system in a zero-G environment is becoming an important tool for space research and technology.

SOCIETÀ ITALIANA DI FISICA

SCUOLA INTERNAZIONALE DI FISICA « E. FERMI»

LXIII CORSO - VARENNA SUL LAGO DI COMO - VILLA MONASTERO - 5-17 Agosto 1974

8.0.0.1.2.5.4 Bacci Heisermann M. Gross G. Guenin B. Lambert D. Salin S. Garrett

Yip Montrose

22. Schellino 23. M. Cutroni 24. B. Nilsson 25. S. Gasse 26. B. Lambert 27. J. L. Hunter 28. R. B. Lindss

29. W. P. Mason 30. D. Sette 31. I. Rudnick 32. H. O. Berktay 33. R. Cook 34. E. Carome

PROCEEDINGS OF THE INTERNATIONAL SCHOOL OF PHYSICS « ENRICO FERMI »

Course I

Questioni relative alla rivelazione delle
particelle elementari, con particolare
riguardo alla radiazione cosmica
edited by G. Puppi

Course II

Questioni relative alla rivelazione delle
particelle elementari, e alle loro interazioni con particolare riguardo alle
particelle artificialmente prodotte ed
accelerate
edited by G. Puppi

Course III

Questioni di struttura nucleare e dei
processi nucleari alle basse energie
edited by G. Salvetti

Course IV

Proprietà magnetiche della materia
edited by L. Giulotto

Course V
Fisica dello stato solido
edited by F. Fumi

Course VI

Fisica del plasma e applicazioni astrofisiche
edited by G. RIGHINI

Course VII

Teoria della informazione
edited by E. R. CAIANIELLO

Course VIII

Problemi matematici della teoria
quantistica delle particelle e dei campi
edited by A. Borsellino

Course IX

Fisica dei pioni
edited by B. Touschek

Course X

Thermodynamics of irreversible processes
edited by S. R. DE GROOT

Course XI
Weak Interactions
edited by L. A. RADICATI

Course XII

Solar Radioastronomy
edited by G. RIGHINI

Course XIII

Physics of Plasma: Experiments and
Tecniques
edited by H. Alfvén

Course XIV

Ergodic Theories

edited by P. CALDIROLA

Course XV
Nuclear Spectroscopy
edited by G. RACAH

Course XVI

Physicomathematical Aspects of Biology
edited by N. Rashevsky

Course XVII

Topics of Radiofrequency Spectroscopy
edited by A. Gozzini

Course XVIII

Physics of Solids (Radiation Damage in Solids)
edited by D. S. BILLINGTON

Course XIX

Cosmic Rays, Solar Particles and

Space Research

edited by B. Peters

Course XX

Evidence for Gravitational Theories
edited by C. Møller

Course XXI

Liquid Helium

edited by G. CARERI

Course XXII
Semiconductors
edited by R. A. SMITH

Course XXIII

Nuclear Physics
edited by V. F. Weisskopf

Course XXIV

Space Exploration and the Solar System

edited by B. Rossi

Course XXV

Advanced Plasma Theory
edited by M. N. ROSENBLUTH

Course XXVI
Selected Topics on Elementary Particle Physics
edited by M. Conversi

Course XXVII

Dispersion and Absorption of Sound
by Molecular Processes
edited by D. Sette

Course XXVIII

Star Evolution
edited by L. Gratton

Course XXIX

Dispersion Relations and Their Connection with Causality
edited by E. P. WIGNER

Course XXX

Radiation Dosimetry
edited by F. W. Spiers and G. W.
REED

Course XXXI

Quantum Electronics and Coherent

Light

edited by C. H. Townes and P. A.

MILES

Course XXXII

Weak Interations and High-Energy
Neutrino Physics
edited by T. D. LEE

Course XXXIII

Strong Interactions
edited by L. W. ALVAREZ

Course XXXIV

The Optical Properties of Solids
edited by J. TAUC

Course XXXV

High-Energy Astrophysics
edited by L. Gratton

Course XXXVI

Many-Body Description of Nuclear

Structure and Reactions

edited by C. Bloch

Course XXXVII

Theory of Magnetism in Transition

Metals

edited by W. Marshall

Course XXXVIII

Interaction of High-Energy Particles
with Nuclei
edited by T. E. O. ERICSON

Course XXXIX

Plasma Astrophysics
edited by P. A. STURROCK

Course XL
Nuclear Structure and Nuclear Reactions
edited by M. Jean

Course XLI
Selected Topics in Particle Physics
edited by J. STEINBERGER

Course XLII

Quantum Optics
edited by R. J. GLAUBER

Course XLIII

Processing of Optical Data by Organisms and by Machines
edited by W. Reichardt

Course XLIV

Molecular Beams and Reaction Kinetics
edited by Ch. Schlier

Course XLV

Local Quantum Theory
edited by R. Jost

Course XLVI

Physics with Storage Rings
edited by B. Touschek

Course XLVII

General Relativity and Cosmology
edited by R. K. Sachs

Course XLVIII

Physics of High Energy Density
edited by P. CALDIROLA and H.
KNOEPFEL

Course IL Foundations of Quantum Mechanics edited by B. D'ESPAGNAT

Course L

Mantle and Core in Planetary Physics
edited by J. COULOMB and M. CAPUTO

Course LI

Critical Phenomena
edited by M. S. GREEN

Course LII

Atomic Structure and Properties of

Solids

edited by E. Burstein

Course LIII

Developments and Borderlines of

Nuclear Physics

edited by H. Morinaga

Course LIV

Developments in High-Energy Physics
edited by R. R. GATTO

Course LV

Lattice Dynamics and Intermolecular
Forces
edited by S. Califano

Course LVI

Experimental Gravitation
edited by B. Bertotti

Course LVII

Topics in the History of 20th Century
Physics
edited by C. Weiner

Course LVIII **Dynamic Aspects of Surface Physics**edited by F. O. GOODMAN

Course LIX

Local Properties at Phase Transitions
edited by K. A. MÜLLER

Course LX

C-Algebras and their Applications to

Statistical Mechanics and Quantum

Field Theory

edited by D. KASTLER

Course LXI

Atomic Structure and Mechanical

Properties of Metals

edited by G. CAGLIOTI

Course LXII

Nuclear Spectroscopy and Nuclear

Reactions with Heavy Ions

edited by H. Faraggi and R. A. Ricci

7863530

INDICE

D.	SE	TTE - Preface	ag. XIII	
Gr	upp	po fotografico dei partecipanti al Corso fue	ori testo	
R.		LINDSAY – Historical development of physical acoustics d future perspectives.		
	1.	Introduction	ag. 1	
	2.	What is physical acoustics?	» 1	
	3.	Historical origins	» 2	
	4.	The velocity of sound in air	» 3	
	5.	The attenuation of sound	» 7	
	6.	The development of molecular acoustics	» 10	
	7.	Experimental background of modern physical acoustics	» 12	
	8.	The development of ultrasonics	» 12 » 13	
	9.	Macroscopic physical acoustics		
		Recent developments in molecular acoustics	» 14» 15	
	TT.	Research perspectives	" 10	
C.	J.	Montrose – Correlation functions in molecular acoustics.		
	1.	Introduction	» 18	
	2. Time correlation functions			
		2'1. General description	» 19	
		2'2. Correlation functions in statistical mechanics	» 22	
	3.	Linear response theory; transport coefficients	» 26	
		3'1. Response to external forces: the Kubo method	» 26	
		3'2. Relaxation to equilibrium; generalized Langevin theory	» 30	
		3.2.1. Elementary Langevin theory	» 30	
		3'2.2. Generalized Langevin theory	3335	
		gevin equation	» 35	

	4. Sound propagation	pag.	37
	5. Collective mode dynamics	*	48
S.	YIP - High-frequency short-wavelength fluctuations in fluids.		
	List of symbols	»	55
	1. Introduction	»	56
	2. Sound propagation at low frequencies	*	58
	2.1. Hydrodynamic dispersion relations	»	58
	2.2. Kinetic-theory dispersion relations	*	61
	3. Sound propagation at high frequencies	»	64
	3.1. Dispersion relations of kinetic models	» »	70
	3'3. Propagation in the collisionless regime—zero sound	»	76
	4. Propagation of density and current fluctuations at short		
	wavelengths	**	81
	5. Concluding remarks	*	91
С.	J. Montrose - Light scattering and molecular acoustics.		
	1. Introduction	»	97
	2. Light scattering	*	98
	3. The scattered-light spectrum and molecular acoustics	*	101
I.	RUDNICK - Physical acoustics at UCLA in the study of super-		
_,	fluid helium.		
	1. Sound propagation in superfluid helium—theory	»	112
	1'1. Introduction	»	112
	1'2. First and second sound	»	113
	1'3. Fourth sound	»	116
	1'4. Third sound	>>	118
	1.5. The thickness of a helium film	»	118
	1.6. Simple approximate derivation of the velocity of third		
	sound	*	119
	1.7. Doppler shift of first, second, third and fourth sound	*	120
	2. Sound propagation in superfluid helium—experiments	»	121
	2.1. First sound	»	121
	2.1.1. First-sound transducers	>>	121
	2.1.2. Cavitation in liquid helium	*	122
	2.1.3. Velocity of first sound at the lambda-transition	»	124
	2'2. Second sound	»	131
	2'2.1. Second-sound transducers	» »	131 131
	A A.A. VEIDCHEV OF SECOND SOUTH AD THE TAILDUA-DIAISIULUI	11	101

		2.3.	Third	sound	-		pag.	133
			2'3.1.	Third-sound transducers			*	133
			2.3.2.	The velocity of third sound	. 4	1 cx	»	134
				The attenuation of third sound	N. 3.	· ·	»	138
			2.3.4.	The critical velocity of superfluid films	100	.]	*	140
			2.3.5.	The thickness of a moving film	35	./.	*	144
		2.4.		sound	No. of Street, or other Persons		»	144
				Transducers for fourth sound			*	144
			2.4.2.	The velocity of fourth sound			»	145
			2 4.3. 2 4.4.	Scattering of fourth sound by the superle The reduction of ϱ_s/ϱ , T_{λ} and u_4 by healing	-leng	gth	»	147
			2.4.5.	effects	usi	ing	»	148
			2.4.6.	fourth sound	guid	les	*	149
				superleaks			»	158
			2.4.7.	Superfluid Helmholtz resonators	•		»	161
S.	sor liq	nores uides	longi	. Martinoty – Absorption des ondes audinales et transversales dans les cr	rista	ux		
							*	165
							»	169
				nique			>>	171
	3.			d'ondes ultrasonores et théorie hydrodyna				
				liquides nématiques			»	174
				ultrasonores transversales			»	174
				ultrasonores longitudinales			»	181
				elaxationnels			>>	184
	5.	Conc	lusion	et perspectives			*	189
w.	Р.	Mas	ON - A	Acoustical properties of solids.				
	Glo	ossary	of sy	nbols			»	196
				1			»	198
				of sound in a perfect crystal			»	199
				of energy conversion to thermal phonons			»	199
		2.2.	Effect	of electrons on acoustic attenuation			»	203
	3.			ructure in a solid			»	205
	٠.			of grain structure in a solid			»	205
				n wall motion in ferromagnetic material.			»	207

		3.3. Phase transitions and critical points pa	g. 211
		3.3.1. Ferroelectric crystal KH ₂ PO ₄ (potassium dihy-	
		drogen phosphate)	211
		3.3.2. Order-disorder transition in ammonium chloride »	215
	4.	Effect of imperfections	216
		4.1. Introduction	216
		4.2. Effect of point defects	217
		4'3. Internal friction in fused silica »	220
		4.4. Effect of dislocations on acoustic attenuation »	221
		4.4.1. Introduction	221
		4.4.2. Granato-Lücke theory	226
		4.4.3. Low-frequency loss connected with kink motion »	229
		4.4.4. Internal friction in rocks	233
		4.4.5. Relaxations due to dislocations	240
		4.4.5.1. Bordoni peak	240
		4.4.5.2. Simpson-Sosin peak	243
		4.4.6. High-amplitude internal friction »	245
		4'4.6.1. Internal friction due to the break-away	
		of dislocations from pinning points »	245
		4'4.6.2. Internal friction due to unstable Frank- Read loops	249
	_		
		Fatigue in metals at ultrasonic frequencies »	
	6.	Acoustic emission»	258
\mathbf{E} .	F.	CAROME - Superconducting transducers for use in the	
	50	to 1000 GHz range.	
	1.	Introduction	
	2.	Tunnel junctions as electrical elements »	
	3.	Tunnel junctions as acoustic transducers »	
	4.	Superconducting fluorescent phonon generators »	273
	5.	Superconducting bolometer receivers »	274
	6.	Applications	275
	7.	Conclusion	276
K	Di	RANSFELD - Production and detection of very-high-fre-	
.4.3.		ency sound waves.	
	qu	ioney sound waves.	
	1.	Introduction	278
	$\frac{1}{2}$.		279
	-•	2'1. Surface excitation	280
		2'2. Thin-film piezoelectric transducers	280
		2'3. Piezoelectric semiconducting transducers »	280