ABHIK ROYCHOUDHURY

Embedded Systems and
Software Validation

Abhik Roychoudhury

Departrment of Computer Science
National University of Singapore

LA

E2010001189
v 4°
AMSTERDAM e BOSTON o HEIDELBERG o LONDON M ‘
NEW YORK ¢ OXFORD e PARIS o SAN DIEGO A
SAN FRANCISCO e SINGAPORE o SYDNEY » TOKYO MORGAN

Morgan Kaufmann Publishers is an imprint of Elsevier KAUFMANN

Morgan Kaufmann Publishers is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

This book is printed on acid-free paper. @
Copyright © 2009 by Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy, recording, or any information
storage and retrieval system, without permission in writing from the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333,
E-mail: permissions @elsevier.co.uk. You may also complete your request on-line

via the Elsevier homepage (http://elsevier.com), by selecting “Customer Support” and
then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Roychoudhury, Abhik.

Embedded systems and software validation / Abhik Roychoudhury.

p. cm. — (The Morgan Kaufmann series in systems on silicon)

Includes bibliographical references and index.

ISBN 978-0-12-374230-8 (hardcover : alk. paper)
1. Embedded computer systems—Design and construction. 2. Embedded computer
systems—Testing. 3. Computer software—Testing. L. Title.

TK7895.E42R72 2009

004.1-dc22

2009011196

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN 13: 978-0-12-374230-8

For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com or www.elsevierdirect.com

Printed and bound in United States of America
0910 987654321

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

= YOK / . =)
ELSEVIER BOOKAID g6 Foundation

Embedded Systems and
Software Validation

The Morgan Kaufmann Series in Systems on Silicon
Series Editor: Wayne Wolf, Georgia Institute of Technology

The Designer’s Guide to VHDL, Second Edition
Peter J. Ashenden

The System Designer’s Guide to VHDL-AMS
Peter J. Ashenden, Gregory D. Peterson, and Darrell A. Teegarden

Modeling Embedded Systems and SoCs
Axel Jantsch

ASIC and FPGA Verification: A Guide to Component Modeling
Richard Munden

Multiprocessor Systems-on-Chips
Edited by Ahmed Amine Jerraya and Wayne Wolf

Functional Verification
Bruce Wile, John Goss, and Wolfgang Roesner

Customizable and Configurable Embedded Processors
Edited by Paolo Ienne and Rainer Leupers

Networks-on-Chips: Technology and Tools
Edited by Giovanni De Micheli and Luca Benini

VLSI Test Principles & Architectures

Edited by Laung-Terng Wang, Cheng-Wen Wu, and Xiaoqing Wen
Designing SoCs with Configured Processors

Steve Leibson

ESL Design and Verification
Grant Martin, Andrew Piziali, and Brian Bailey

Aspect-Oriented Programming with e
David Robinson

Reconfigurable Computing: The Theory and Practice of FPGA-Based Computation
Edited by Scott Hauck and André DeHon

System-on-Chip Test Architectures

Edited by Laung-Terng Wang, Charles Stroud, and Nur Touba
Verification Techniques for System-Level Desigg: -

Masahiro Fujita, Indradeep Ghosh, and Mukul Prasad

VHDL-2008: Just the New Stuff
Peter J. Ashenden and Jim Lewis

On-Chip Communication Architectures: System on Chip Interconnect
Sudeep Pasricha and Nikil Dutt

Embedded DSP Processor Design: Application Specific Instruction Set Processors
Dake Liu

Processor Description Languages: Applications and Methodologies
Edited by Prabhat Mishra and Nikil Dutt

Three-dimensional Integrated Circuit Design
Vasilis F. Pavlidis and Eby G. Friedman

Electronic Design Automation: Synthesis, Verification, and Test
Edited by Laung-Terng Wang, Kwang-Ting (Tim) Cheng, Yao-Wen Chang

Embedded Systems and Software Validation
Abhik Roychoudhury

To Jishnu

Acknowledgments

This book owes a lot to all my students, colleagues, and co-workers. It is by working
with them over the past decade that I have discovered the issues and challenges
in the field of embedded systems validation. So, first and foremost, I must thank
them all.

I have written this book off and on, in the course of my teaching and research
work at the National University of Singapore (NUS). Funding from a University
Research Council project at NUS is gratefully acknowledged.

Aleave from NUS in 2007 to the Indian Institute of Science (IISc) infused in me
the energy to start writing the book. The calm environs of the IISc campus helped
set the mood for writing this book.

The support of Elsevier staft was instrumental in ensuring that the book has
proceeded on schedule.

Finally, playing with my 5-year-old son Jishnu allowed me to absorb the pressures
of writing the book in the midst of various deadlines and commitments. Thanks,
Jishnu!

Singapore
19 January 2009

Preface

This book attempts to cover the issues in validation of embedded software and
systems. There are many books on this topic, as a Web search with the appropriate
search terms will reveal. So, why this book?

There are several ways to answer the question. The first, most direct answer is that
the current books mostly deal with the programming and/or co-design of embedded
systems. Validation is often discussed almost as an afterthought. In this book, we
treat validation as a first-class citizen in the design process, weaving it into the design
process itself.

The focus of our book is on validation, but from an embedded software and sys-
tems perspective. The methods we have covered (testing/model-checking) can also
be covered from a completely general perspective, focusing only on the techniques,
rather than on how they fit into the system design process. But we have not done so.
Even though the focus of the book is on validation methods, we clearly show how it
fits into system design. As an example, we present and discuss the model-checking
method twice in two different ways — once at the level of system model (Chapter 2)
and again at the level of system implementation (Chapter 5).

Finally, being rooted in embedded software and systems, the focus of our book
is not restricted to functionality validation. We have covered at least two other
aspects — debugging of performance and communication behavior. As a result, this
book contains analysis methods that are rarely found in a single book — testing
(informal validation), model checking (formal validation), worst-case execution time
analysis (static analysis for program performance), schedulability analysis (system
level performance analysis), and so on — all blended under one cover, with the goal
of reliable embedded system design.

As for the chapters of the book, Chapter 1 gives a general introduction to the issues
in embedded system validation. Differences between functionality and performance
validation are discussed at a general level.

Chapter 2 discusses model-level validation. It starts with generic discussions on
system structure and behavior, and zooms into behavioral modeling notations such
as finite-state machines (FSMs) and message sequence charts (MSCs). Simulation,
testing, and formal verification of these models are discussed. We discuss model-
based testing, where test cases generated from the model are tried out on the system
implementation. We also discuss property verification, and the well-known model-
checking method. The chapter ends with a nice hands-on discussion of practical
validation tools such as SPIN and SMV. Thus, this chapter corresponds to model-level
debugging.

xi

Xii

Preface

Chapter 3 discusses the issues in resolving communication incompatibilities
between embedded system components. We discuss different strategies for resolving
such incompatibilities, such as endowing the components with appropriate inter-
faces, and/or constructing a centralized communication protocol converter. Thus,
this chapter corresponds to communication debugging.

Chapter 4 discusses system-level performance validation. We start with software
timing analysis, in particular worst-case execution time (WCET) analysis. This is
followed by the estimation of time spent as a result of different interferences in a pro-
gram execution — from the external environment, or from other executing programs
on the same or different processing elements. Suitable analysis methods to estimate
the time due to such interferences are discussed. We then discuss mechanisms to
combat execution-time unpredictability via system-level support. In particular, we
discuss compiler-controlled memories or scratchpad memories. The chapter con-
cludes with a discussion on time predictability issues in emerging applications.
Thus, this chapter corresponds to performance debugging.

Chapter 5 discusses functionality debugging of embedded software. We discuss
both formal and informal approaches, with almost equal emphasis on testing and
formal verification. The first half of the chapter involves validation methods built
on testing or dynamic analysis. The second half of the chapter concentrates on
formal verification, in particular software model checking. The chapter concludes
with a discussion on combining formal verification with testing. Thus, this chapter
corresponds to software debugging.

Apart from some debugging/validation methods being common to Chapters 2
and 5, the readers may try to read the chapters independently. A senior undergraduate
or graduate course on this topic may, however, read the chapters in sequence, that
is, Chapters 2, 3, 4, 5.

ABOUT THE AUTHOR

Abhik Roychoudhury received his M.S. and Ph.D. in Computer Science from the
State University of New York at Stony Brook in 1997 and 2000, respectively. His
research has focused on formal verification and analysis methods for system design,
with focus on embedded software and systems. In these areas, his research group has
been involved in building practical program analysis and software productivity tools
that enhance software quality as well as programmer productivity. Two meaningful
examples of such endeavors are the JSlice dynamic analysis tool for Java program
debugging, and the Chronos static analysis tool for ensuring time-predictable exe-
cution of embedded software. His awards include a 2008 IBM Faculty Award. Since
2001, Abhik has been at the School of Computing in the National University of
Singapore, where he is currently an Associate Professor.

Contents

CHAPTER 1

CHAPTER 2
2.1
2.2
23

24

25
2.6

2.7
2.8

29

2.10
2.11
2.12
2.13

CHAPTER 3
3.1

3.2

Acknowledgmentsooiiiiiiiiiiii X
PTEIACE: , cmusin s 5 sommnms 35 5 6imsions § 5 daicinosns + « masmionns + smismsncn + # o siscncamee xi
Introduction 1
Model Validation 7
Platform versus System Behavior 8
Criteria for Design Model.................cooviiiiiii L. 10
Informal Requirements: A Case Study 12
2.3.1 The Requirements Document............................. 13
2.3.2 Simplification of the Informal Requirements 14
Common Modeling Notationsoooveeieiiniinn... 16
2.4.1 Finite-State Machinesccocoiiiiii... 16
2.4.2 Communicating FSMSccoiiiiiiiiiiii. 20
2.4.3 Message Sequence Chart-Based Models 27
Remarks about Modeling Notations 37
Model Simulationsccooiiiiiiiiiiiiii i 39
2.6.1 FSM Simulationsco.ooiviiiiiiiiiiiii .. 41
2.6.2 Simulating MSC-Based System Models 46
Model-Based Testingccooeviuiiniiiiiiiiiiiiiann. .. 50
Model Checkingc.oviiiniiiiii i 58
2.8.1 Property Specification.......................ccooeiiiii... 58
2.8.2 Checking Procedurecoooiiiiiiii .. 73
The SPIN Validation Tooloocooiiiiiiiini. . 82
The SMV Validation Tooloooiiiiiiiiiini . 86
Case Study: Air-Traffic Controller................................ 89
Referencesocooviiiiiiiiiiii 91
EXCICISES o coovvnin 6 sniion s 5 555500 4+ o mmimnin s+ smmmrnn o 5 saromiorne « o soss 93
Communication Validation 95
Common Incompatibilities.........................oooiii .. 98
3.1.1 Sending/Receiving Signals in Different Order........... 99
3.1.2 Handling a Different Signal Alphabet.................... 100
3.1.3 Mismatch in Data Format................................. 102
3.1.4 Mismatchin DataRates................................... 105
Converter Synthesisooiiiiiiiiiiiiii . 106
3.2.1 Representing Native Protocols and Converters 106
3.2.2 Basic Ideas for Converter Synthesis...................... 108
3.2.3 Various Strategies for Protocol Conversion 115

viii Contents

3.3
34
3.5

CHAPTER 4

4.1
4.2

4.3

4.4
4.5

4.6
4.7
4.8

CHAPTER 5
5.1

5.2

5.3
5.4

Bibliography

Index

3.2.4 Avoiding No-Progress Cycles.................coooiiiiin
3.2.5 Speculative Transmission to Avoid Deadlocks...........
Changing a Working Design ..o,
Referencesoooiiiiiiii i
EXEICISES ...ttt

Performance Validation

The Conventional Abstraction of Time...........................
Predicting Execution Time of a Program.........................
4.2.1 WCET Calculationccoovuiiiiiiiiiiiiiiiannnn....
4.2.2 Modeling of Microarchitecture
Interference within a Processing Element........................
4.3.1 Interrupts from Environment
4.3.2 Contention and Preemptionooel..
4.3.3 Sharing a Processor Cache........................ooil
System-Level Communication Analysis
Designing Systems with Predictable Timing.....................
4:5.1 Scratehpad MEMOTIES s ususms s s sssmnn s « sonmmns 2 s sammses s 52
4.5.2 Time-Triggered Communication
Emerging Applicationsoiiiiiiiiiiiiiiieiiiiiiinnnn.
Referenceso
EXErcisesoooiiiiiiiii

Functionality Validation

Dynamic or Trace-Based Checking
5.1.1 Dynamic SHCING......cooviiiiiiiiiiiiii i
5.1.2 Fault Localizationccooociiiiiiiin.
5.1.3 Directed Testing Methods.................................
BOFMIal VeI CatOMN uwmms 5 suwusn s ¢ s s & 5455084 5 5 sdiosiinons # 5 soossisoss
5.2.1
5.2.2 Software Checking via Predicate Abstraction............
5.2.3 Combining Formal Verification with Testing
Referenceso
EXEICISES . .vvtt ittt

125
126
131
133
145
154
155
157
161
165
169
169
174
176
177
177

181
184
187
196
203
207
211
218
225
229
230

233

241

CHAPTER

Introduction

Embedded software and systems have come to dominate the way we interact with
computers and computation in our everyday lives. Computers are no longer isolated
entities sitting on our desks. Instead, they are nicely woven and integrated into our
everyday lives via the gadgets we directly or indirectly use — mobile phones, wash-
ing machines, microwaves, automotive control, and flight control. Indeed, embedded
systems are so pervasive, that they perform the bulk of the computation today —
putting forward “embedded computing” as a new paradigm to study. In this book, we
focus on validation of embedded software and systems, for developing embedded
systems with reliable functionality and timing behavior.

Not all embedded systems are safety-critical. One one hand, there are the safety-
critical embedded systems such as automobiles, transportation (train) control, flight
control, nuclear power plants, and medical devices. On the other hand, there are
the more vanilla, or less safety-critical, embedded systems such as mobile phones,
HDTYV, controllers for household devices (such as washing machines, microwaves,
and air conditioners), smart shirts, and so on. Irrespective of whether an embedded
system is safety-critical or not, the need for integrating validation into every stage
of the design flow is clearly paramount. Of course, for safety-critical embedded
systems, there is need for more stringent validation — so much so that formal analysis
methods, which give mathematical guarantees about functionality/timing properties
of the system, may be called for at least in certain stages of the design.

Our focus in this book is on validation methods, and how they can be woven into
the embedded system design process. Before proceeding further, let us intuitively
explain some common terminologies that arise in validation — testing, simulation,
verification, and performance analysis.

m Testing refers to checking that a system behaves as expected for a given input.
Here the system being checked can be the actual system that will be executed.
However, note that it is only being checked for a given input, and not all inputs.

Embedded Systems and Software Validation
Copyright © 2009, Elsevier Inc. All rights reserved. 1

2

CHAPTER 1 Introduction

m Simulation refers to running a system for a given input. However, simulation
differs from actual system execution in one (or both) of the following ways.

e The system being simulated might only be a model of the actual system
to be executed. This is useful for functionality simulation — check out the
functionality of a system model for selected inputs before constructing the
actual system.

e The execution platform on which the system is being simulated is different
from the actual execution platform. This situation is very common for per-
formance simulations. The execution platform on which the actual system
will be executed may not be available, or it might be getting decided through
the process of performance simulations. Typically, a software model of the
execution platform might be used for performance simulations.

m formal verification refers to checking that a system behaves as expected for
all possible inputs. Because exhaustive testing is inefficient or even infeasible,
verification may be achieved by statically analyzing a system model (which
may be represented by a structure such as a finite-state machine).

m Finally, we note that formal verification methods have conventionally been
used for giving strict mathematical guarantees about the functionality of a
system. However, to give strict guarantees about performance (for example,
to give an upper bound on the execution time of a given software), one needs
to employ mathematical analysis techniques for estimating performance. Such
techniques often go by the name of performance analysis.

In order to see what the possibilities and opportunities are in terms of integrating
validation into embedded system design flows, we can look at the automobile indus-
try. It is widely recognized that automotive electronics is a wide market, with more
and more functionalities in modern-day cars being software-controlled. Indeed, inno-
vations in automotive software can bring about new designs, a point often articulated
by car manufacturers themselves. The by-now famous quotes such as “more than
90% of the innovation in a modern-day car is from the software” stand testimony
to the importance of embedded software/systems in the design of a modern-day
car. Naturally, because of the importance of the various car components (brakes,
airbags, etc.) functioning “correctly” during the driving of a car, rigorous vali-
dation of the hardware/software controlling these components is crucial. In other
words, reliable and robust embedded system design flows that integrate extensive
debugging/validation are a must.

To see further the importance of validation in embedded systems for automo-
biles, we can delve deeper into the various components of a car, which can be
computer-controlled. Roughly speaking, these can be divided into three categories —
engine features, cabin features, and entertainment. Clearly, the engine features are

Introduction

the most safety-critical and the features related to in-vehicle entertainment are the
least safety-critical. The engine features include critical features such as the brake
and steering wheel; usually these features involve hard real-time constraints. The
cabin features include less critical (but important) features such as power windows
and air conditioning. The entertainment or infotainment features include control of
in-car devices such as GPS navigation systems, CD player, and in-car television, as
well as communication between these devices. Clearly, the computing component
controlling the engine features (such as brakes) needs very rigorous validation — to
the extent that the behavior of these computing components could be subjected to
formal modeling and verification. For the cabin features, we at least need modeling
and extensive testing of the computing components controlling the cabin features.
For the infotainment features, we need performance analysis methods to ensure that
the soft real-time constraints are satisfied.

Thus, as we can see from the discussion on the specific domain of automotive
software, validation of different kinds are required for a complex embedded system.
For the more safety-critical parts of the system, rigorous modeling and formal veri-
fication may be needed. For the less safety-critical parts, more extensive testing may
be sufficient. Moreover, for the parts of the system controlling or ensuring real-time
responses to/from the environment, detailed performance validation needs to be car-
ried out. Thus, the validation methods we employ can range from formal methods
(such as model checking) to informal ones (such as testing). Moreover, the level of
abstraction at which we employ the validation may vary — model-level validation; or
high-level implementation validation (where we consider only the inter-component
behavior without looking inside the components); or low-level implementation val-
idation (where we also look inside the system components). Finally, the criteria for
validation may also vary — we may perform validation at different levels, to check
for functionality errors, timing errors, and so on.

Figure 1.1 visually depicts the intricacies of embedded system validation. In
particular, Figure 1.1a shows the different levels (model/implementation) and criteria
(performance/functionality) of system validation.

Figure 1.1b illustrates the complications in functionality validation. For an
embedded system that we seek to construct, we may design and elaborate it at
different levels of details (or different levels of abstraction). If we are seeking func-
tionality validation, then the higher the level of detail, the lower the formality of the
validation method. Thus, for system design at higher levels of abstraction, we may
try out fully formal validation methods. On the other hand, as we start fleshing out
the implementation details of the system under construction, we may settle for more
informal validation methods such as extensive testing.

As opposed to functionality validation, the picture appears somewhat different
for timing validation — see Figure 1.1c. As is well understood, embedded systems

4 CHAPTER 1 Introduction

-+ Hardware
A
- Communication Functionalit
System model | Partition validation — > & Y
y
I performance
Software validation
Model validation
(a)
(2]
g =
s 3
- ()]
g £
5 E
ks °
ey >
£ o
@ g
£ 3
b — £ — —
Level of details in design Level of details in design

(b) (©

Figure 1.1

Issues in functionality and timing validation of embedded systems.

often incorporate hard or soft real-time constraints on interaction of the system with
its physical environment— or, for that matter, interactions between the different
components of the system. Hence, timing validation involves developing accurate
estimates of the “system response time” (in response to some event from the envi-
ronment). Clearly, as the details of the embedded system are fleshed out, we can
develop more accurate timing estimates and, in that sense, perform more detailed
timing validation.

Thus, Figure 1.1 shows the issues in validating functionality versus validating
timing properties —both of which are of great importance in embedded system
design flows. Two different aspects are being highlighted here:

m Formal verification of functionality is better conducted at higher levels of
abstraction. As we start considering lower level details, formal approaches do
not scale up, and informal validation methods such as testing come into play.

m For performance validation, as we consider lower level details, our perfor-
mance estimates are more accurate.

The reader should note that other criteria along which embedded system valida-
tion may proceed, such as estimating the energy or area requirements of a system,

Introduction

also have certain basic similarities with timing validation. As the system design is
elaborated in more detail, we can form a better idea about its timing, energy, and
area requirements.

In the following chapters, we study embedded software/systems validation from
various angles:

m Model-level validation (mostly functionality) — Chapter 2
s Implementation-level validation
e High-level validation of intercomponent communication — Chapter 3
e Low-level implementation validation
— Performance debugging — Chapter 4
— Functionality debugging — Chapter 5

So, let us get on with the ride — studying various debugging/validation methods for
design of reliable embedded software and systems.

5

HOoNIRE, B e PDE G 1] 0] . www. ertongbook. com

