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Preface

The purpose of these notes is twofold: to provide a quick self-
contained introduction to the general theory of Lie groups and to give
the structure of compact connected groups and Lie groups in terms of
certain distinguished 'simple' Lie groups. With regards to the first aim,
the notes can be used to provide a general introduction to the fundamen-
tals of Lie groups or as a bridge to more advanced texts. In either case,
experience has shown that they are suitable for postgraduate students
and, at least the earlier chapters, for senior undergraduates. Concer-
ning the second aim, the existing treatments of the structure results
referred to above seem to be all from a fairly advanced point of view
(cf. Pontrjagin [1] and Weil [1]). It is hoped that the present, more
modern treatment makes these powerful results more generally acces-
sible, in particular to those only wishing to use them as a tool.

The theory of Lie groups lies at the junction of the theories of
differentiable manifolds, topological groups and Lie algebras, In
keeping with current trends, when dealing with manifolds (and hence
with Lie groups) a coordinate-free notation is used, thus removing the
necessity for tedious juggling of indices and, hopefully, adding to the
clarity and intuitiveness of the theory. In the case of Lie groups, par-
ticular emphasis is placed upon results and techniques which educe the
interplay between a Lie group and its Lie algebra.

During the past few years a number of important results have
been obtained in harmonic analysis on compact groups and compact Lie
groups by using the structure of these groups ... the overall orientation
of the following notes is to give full details of several of these structure
results. The main theorem for Lie groups is that if G is a compact

connected Lie group, then G is topologically isomorphic to

(G, X G, X ... XG)/K,

vii



where G0 is the identity component of the centre of G, the G].
(=1, ..., m) are all the simple, connected, normal Lie subgroups
of G, and K is a finite subgroup of the centre of the product. As a
corollary, a similar structure theorem is given in which the G]. are
also simply connected. This latter result is then generalised to arbi-
trary compact connected groups.

The decision on whether to include a particular result was based
almost entirely on whether or not it was required for the proofs of the
above structure theorems. This procedure accounted for the inclusion
of most of the fundamental results and concepts in the theory of Lie
groups; to round off the notes it only remained to add a few divertimenti
such as the contents of Chapter 4 on the geometry of Lie groups or the
list in Chapter 6 of necessary and sufficient conditions for a compact
group to be Lie.

Chapter 1 contains results in the theory of analytic manifolds
which are basic to the study of Lie groups. Chapter 2 begins the study
of Lie groups and it is here that most of the fundamental concepts such
as Lie algebras, left invariant vector fields, l1-parameter subgroups
and the exponential map are introduced. In Chapter 3 the first deep
result is presented; this is the Campbell- Baker-Hausdorff formula and
it describes a relationship between the group structure of a Lie group
and the algebraic structure of its Lie algebra, Chapter 4 introduces the
notion of a geodesic on a Lie group and uses the resulting ideas to show
that the exponential map is surjective whenever the Lie group is compact
and connected. The correspondence between Lie subgroups of a Lie
group and subalgebras of its Lie algebra is treated in Chapter 5. Chapter
6 begins with a list of conditions which are necessary and sufficient for
a compact group to be Lie and ends with the structure results mentioned
above. An appendix contains all the results on locally compact topological
groups and their representations used in the body of the notes,

Further remarks, historical and motivational, on the contents of
a chapter are given at the end of that chapter, along with related exer-
cises. That a piece of theory is essential to a particular proof is no
bar to it being included as an exercise if it is fairly straightforward or
if it is fully treated in the literature.
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I gave a course on some of the topics treated in these notes
during 1973 at the Australian National University to an audience con-
sisting mainly of postgraduate students, and then in 1974 at the University
of New South Wales. These notes derive from these courses and in
particular from duplicated notes of the earlier chapters. Iam grateful
to the people attending these courses for improvements of a number of
arguments and in particular to Dr. Graham Wood for his reading of
Chapter 1 and subsequent discussions. It was he who developed the
local coordinate-free formula given in 1, 3. 2 and 1, 3, 3 for the Lie product
of two analytic vector fields.

Finally, I feel that this preface would not be complete without some
mention of the role of diagrams. Even though a large number of the con-
cepts and results of manifolds and Lie groups have a strong pictorial or
diagrammatic aspect, my experience is that diagrams in mathematics
books are often of little value without a personal explanation. For this
reason and because of widely varying preferences as to style, apart from
several 'commutative arrow diagrams’', none have been included here.
However, without doubt they are valuable in developing an intuition in this
area and the reader is strongly encouraged to experiment with them,

Also some have found benefit in reformulating key results in terms of
coordinates.

In the later chapters a number of substantial results are stated
without proof since it is felt that to include them would take us too far
afield in a set of lecture notes. However, the omitted proofs are all
clearly presented in numerous standard texts to which detailed references

are given. This also allows a clearer path to the structure theorems.

Kensington, 1976 J.F.P,
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R EVES DO B4

1-Analytic manifolds

This chapter contains the basic theory of analytic manifolds
modelled on finite-dimensional real vector spaces. As promised, a
coordinate-free approach will be used with emphasis on global definitions
and properties. One of the reasons for including this chapter, instead of
referring the reader to one or other of the numerous texts on manifolds,
is to allow the reader to gain familiarity with this approach since it will
permeate our whole treatment of Lie groups. Once one does away with
coordinates it becomes obvious that large chunks of the theory of mani-
folds can be effortlessly generalised to manifolds modelled on infinite-
dimensional spaces. We will have no need here of this degree of
generality for reasons explained in the Notes at the end of the chapter,
but the interested reader should consult the works of Lang, [1] and [2].
Since the theory of manifolds is one of the three legs on which the study
of Lie groups stands, the other two being the theory of loc

groups and the theory of Lie algebras, it is import
this chapter, few though they may be, are well un

1.1 Manifolds and differentiability

1.1.1 Manifolds. Let M be a nonvoid Hau
space and E a real finite-dimensional vector space, If ¢ : U=V is
a homeomorphism between open subsets U and V of E and M res-
pectively, then we say that ¢ is a chart on M. Also, if p €V, then
we say that ¢ is a chart about p. (Thanks to the infiltration .of notions
from category theory, it is now respectable to suppose that whenever a
function is specified, its domain and codomain are automatically specified
along with it. Hence there is no need to always explicitly write each
function as a triple. We will adopt this convention here and immediately
make use of it by supposing that whenever ¢, ¢a and ¢B are charts,
then their domains are U, U - and Uﬁ respectively, and their codomains



(which in this case are also their ranges) are V, vV, and Vﬁ res-
pectively, unless otherwise specified. )

Suppose that ¢ % is a chart on M for each a in some index
set A, Then this collection, denoted (¢a : @ € A), is called an atlas on
M provided:

(i) each Ua is contained in the same finite-dimensional space,
E say; and

(i) the union of the V s is equal to M.

In this case we say that M is a manifold or M is a manifold
modelled on E. (When we wish to be completely explicit we will say
that the pair (M, (¢a : @ € A)) is a manifold. However, when no con-
fusion seems possible, we will write only 'M is a manifold'.) The
dimension of M as a manifold is defined as the dimension of E. Re-
garding the invariance of dimension, see Exercise 1. C(i).

It is obvious that every open subset U of a real finite-dimensional
space E is a manifold when equipped with its identity map i. Hence-
forth, whenever we refer to such a set U as a manifold, its atlas will
always be assumed tobe i: U= U. Less trivial examples of a manifold
will be given in Chapter 2 after the definition of a Lie group.

Convention, It is easily seen that a Hausdorff topological space M can
be equipped with a 0-dimensional atlas if and only if the topology of M

is discrete. Thus, even though all the ensuing results on manifolds and
Lie groups are valid for the 0-dimensional case, they are banal. Hence
we will make the convention that the dimensions of all linear spaces,
manifolds, and Lie groups are at least 1. In those cases when we want

to emphasise that the dimension of a linear real space is n, we will often
write it as Rn, where R denotes the real line. Generally, however, such
finite-dimensional real spaces will be denoted by E or F.

1. 1.2 Differentiable maps. The abstract definition of the deri-
vative of a map between finite-dimensional vector spaces is the main point
of departure from the classical approach to differentiable manifolds to
one involving no explicit mention of coordinates. Given a function f from
an open subset U of a finite-dimensional real space E into another such
space F, then we say that f is differentiable at x in U if there exists



a linear map f'(x) : E = F such that
(1.1.1) 1lim & (f(x + €h) - £(x)) = £'(x)h
=0

uniformly for h in any bounded subset of U (provided, of course, that
x + €h € U). This is readily seen to be equivalent to the existence of a
linear map f'(x) : E = F such that

0.

L.1.2) lm |fG+h) - £ - £eon] _
h=0, h+0 [n]l

Here the norm is taken as any one of the equivalent norms which make
the finite-dimensional space E into a Banach space. (See Edwards
[1, Proposition 1. 9. 6].) Throughout the sequel, whenever the need for
a topology on a finite-dimensional vector space arises, then it will
always be taken to be the topology induced from such a norm.

Exercise 1. A collects together some of the elementary proper-
ties of this derivative, for example, the uniqueness of the linear map
f'(x).

If f is differentiable at each point of U, we say that f is
differentiable on U. In this case we have the function

f' : U= hom(E, F),

where f':xk f'(x) and hom(E, F) is the linear space of linear maps
from E into F. Continuing in this way it is clear that we may have
higher order derivatives f" = (f')', f™ = (f")', and so on. In this way
we arrive at the notion of a smooth function (at a point or on an open set)
being a function which possesses derivatives of all orders (in a neigh-
bourhood of the point or in the open set). Suppose that f is as above
and that f" exists on U, then f" is a function from U into

hom(E, hom(E, F)). As is customary, we identify this latter space in
the canonical manner with hom? (E X E, F), the bilinear maps from

E X E into F. In fact, throughout we adopt the convention that if f (®)
exists on U, then its image space is homp(E X ... XE (ptimes), F).
This simplifies a number of expressions, including Taylor's expansion
in 1. 1. 5 below.



If E, F and G are real finite-dimensional spaces and
f:E=TF and g: F—G are differentiable at x and f(x) respectively,
a classical result (included below in Exercise 1, A) states that g o f is

also differentiable at x and moreover:

(1.1.3) (g0 D' =g'f(x) o f'(x).

1.1.3 Remarks. The notion of the derivative given above is
often called the Fréchet derivative. For Banach spaces the study of this
derivative forms Chapter VIII of Dieudonné [1], -while Averbukh and
Smolyanov [1] study this and related derivatives on topological vector
spaces in general. For example, these latter authors show that in a
certain sense the Fréchet derivative is the weakest type of differentia-
tion for which the first order chain rule, formula (1. 1. 3) above, is valid

for finite-dimensional spaces [1, p. 74].

1.1.4 Maps from R. When considering a differentiable map
f:R—E, then f'(x) satisfies

f'(x)(t) = f'(x)(1). t for each t in R.

Thus f'(x) is completely described by its value at 1 and we often write
f'(x) in place of f'(x)(1). (This is precisely what happens in the classical
case of functions from R into R where the derivative f'(x) is taken to
be a number as opposed to an operator. )

1.1.5 Analytic functions. Suppose that f is a smooth function
from an open subset U of a real finite-dimensional space E into another
such space F. Let x in U and y in E be such that x + ty € U for
all tef0, 1]. If y(m) denotes the m-tuple (y, ..., y), then

(1.1.4) f(x+y)=£(x) +11—!f'(x)y Hovs +m—1!f(m)(X)y(m) R

+
for each m €Z = {0, 1, 2, ... }, where the error term R .1

satisfies 1imRm+1(y). lyll™ = o. (See Exercise 1, D, where one
0

particular version of the error term is described.) The sum (1. 1. 4) is



called Taylor's formula of degree m.
Just as in the 1-dimensional case, we say that a smooth function
f: U=TF is (real) analytic on U if for each x in U there exists an

open ball B € U with centre x such that for all z=x+y in B, the
series

& 1 (m) (m)
m=0"
is absolutely convergent (that is, Zm El—'— ”f(m)(x)y(m) “ is convergent,
where the norm is that of F) and converges to f(z). The function
f: U=F is saidto be analytic at x if it is analytic in some neighbour-

hood of x.

Examples, (i) ¥ f:E=F and g:F -G are analytic at x

and f(x) respectively, then g ° f is analytic at x.

(ii) If f: U=F is analytic on U, an open subset of E, then

f(k) is also analytic on U for each k € Z+ and its expansion at

1 f(k+m)(x)y(m)

x+yeU, where x €U, is )} — ; in other words,

m m!
o m terms
By, ..n, u)= Eo‘nlﬂ‘ PG T T e
m=

The validation of these two examples is left as an exercise for the inter-

ested reader,

(iii) Examples of smooth functions which are not analytic are
well known, Even the absolute convergence of (1.1, 5) in a ball is not
sufficient to ensure the analyticity of the function at the centre of the ball
concerned. For example, consider the smooth function g : R-=*R
defined by

e 1/ %’ for x # 0
g(x) =

for x=0
: (m) -+ . .
It satisfies g' (0) =0 for all m € Z so that the series (1. 1. 5) is
absolutely convergent for all y € R, but it only converges to g(x) when
x=0,



1.1, 6 Smooth atlases and manifolds. An atlas (¢a ca€A)
on the Hausdorff topological space M is said to be smooth if each of the
functions ¢;31 o ¢, is smooth on ¢:11(Va n Vﬁ). Such an atlas is said
to be maximal if whenever U and V are open subsets of E and M
respectively and ¢ : U=V is a homeomorphism with the property that

the functions
-1 L1 -1
(1.1.6) ¢, °9:9 (VNV_ )¢, (VﬂVa)
-1 L -1 -1
1.1.7) ¢ "o ¢a : ¢a (VﬂVa)"’¢ (ana)
are smooth for each a € A, then ¢ € (¢a ca €A)

Lemma, Every smooth atlas on M is contained in a unique

maximal smooth atlas.

Proof. If (¢a : @ €A) is smooth on M, let (¢a, :a' €A')
denote the collection of all maps ¥ which are homeomorphisms between
open subsets of E and M and which satisfy (1. 1. 6) and (1. 1. 7). This
collection is an atlas with the desired properties. /

As a matter of terminology, a smooth atlas is said to generate the
unique maximal smooth atlas which contains it.

Definition, A manifold (M, (¢ ol € A)) is said to be smooth
if the atlas (¢ o @€ A) is both smooth and maximal,

In practice it is more usual to work with generating atlases rather
than the corresponding maximal atlases since, as for the case of sub-
bases in topology, most of the properties with which we are concerned
are valid on a maximal atlas if valid on any of its generating atlases.
Thus if we specify a smooth atlas (¢a :a €A) on M and then refer
to (M, (¢ al®€ A)) as a smooth manifold, the precise meaning is that
we are to take M equipped with the maximal smooth atlas generated by
(9, : @ €A).

For example, if M is a real finite dimensional space equipped
with its usual topology and i : M = M is the identity map, then (M, {i})
is a smooth manifold. This is simple enough but even here the maximal



smooth atlas generated by i contains a superabundance of members.

As an exercise describe them.

1,1,7 Smoothmaps, If M and N are smooth manifolds with
smooth atlases (¢a :a €A) and (\PB : B € B) respectively, we say
that a map f from U, an open subset of M, into N is smooth if each
of the maps apl'glqua, defined on ¢:xl (V0 v @), is smooth.

In particular, f is smooth at the point x if and only if
(i) tp;glﬂba is smooth at ¢:11 (x) for every pair (¢a, lI/B) satisfying
(ii) x ‘€ codom ¢a, f(x) € codom IPB.

However, because of the smoothness of the atlases involved, we need
only consider the smoothness of (i) for any particular pair satisfying (ii).
For example, suppose that (i) is satisfied by the pair (¢ o l[/ﬁ) in (ii),
and fyrther suppose that (¢ o t[l ,) is another pair satlsfymg (ii). Then
certainly ¢ ¢ and 1[/8 xl/B are smooth at ¢ ,(x) and zpB (f(x)) res-
pectively. Thus

Vgrfbo = Wa W W5 19,)(0, 9,0

is smooth at ¢;xl,(x) showing that (i) is also satisfied by the pair
(B ¥go)-

If M and N are smooth manifolds and if f : M = N is a homeo-
morphism such that f and ! are smooth, then f is said to be a
diffeomorphism.,

1.1.8 Analytic manifolds. If in the above definitions of smooth
atlases, manifolds and maps between manifolds, we replace 'smooth' by

'analytic', then we arrive at the definitions of analytic atlases, manifolds

and maps between manifolds. If a homeomorphism and its inverse are
analytic, then the homeomorphism is said to be an analytic homeomor-

phism or even an analytic diffeomorphism.

1.1.9 A condition for analyticity. Let M and N be analytic
manifolds with analytic atlases (¢ a @€ A) and (wﬁ : B € B) respect-
ively. Analogously to1l.1.7, amap f: M = N is analyticat x in M
if and only if there exist charts ¢a about x and z,l/B about f(x) such



that ll/E_zlfdia is analytic at x.
1.2 The tangent bundle

1.2.1 The basic idea. Let U be an open subset of a finite-
dimensional real space E, If £: (-g, €) = U, €> 0, is an analytic
curve satisfying £(0) = p, then, either by calculus or imagination, £
has a tangent at p. Moreover, two analytic curves passing through p
have the same tangent provided they have the same 'direction' and the
same 'speed' at p. In mathematical terms, the tangent to £ at p is
defined as £'(0) (or, £'(0)(1)), a vector in E. Thus the tangent space
of U at p may be thought of as E and can be given a concrete realisa-
tion as the family of analytic curves, equivalent modulo their derivatives
at p, passing through p.

Now suppose that M is an analytic manifold modelled on E.

Let Gp(M) denote the set of analytic maps ¢ from open neighbourhoods
of 0 in R into M which satisfy £(0) = p. The derivative of £ is not
defined, but we circumvent this difficulty by considering the derivative
of ¢;1§ at 0, where ¢, is a chart about p. Define an equivalence
relation on Gp(M) by

(L.2.1) E~n i (9,8'(0) = (9, n)'(0).

Let [[E]]p denote the class of curves equivalent to £ (and note that if
two curves are equivalent as in (1. 2, 1), then they are equivalent for each
chart about p); the tangent space to M at p is defined as the set of

all such equivalence classes.

Proceeding in the opposite direction, given any v in E and any
analytic chart ¢ about p, can we always find a curve £ in @ (M)
such that (¢ §) (0) = v? The answer is 'yes' and forms part of
Exercise 1. B.

Thus this fairly intuitive approach to the idea of a tangent space
at a point of a manifold modelled on E shows that it is always isomorphic
to E. Once this point is seen, it becomes notationally easier to proceed
straight to E without any consideration of analytic curves. This will
be done in the next subsection, A further approach to tangent spaces via



