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to
SATYAVATHI
who departed from our midst when the book was half-written
and whose guiding spirit alone enthused

its completion



Foreward

The importance of ordinary differential equations in other areas of science

_ lies in their power to motivate, unify, and give purport to those areas.
This book has been designed as a bridge between the theory and applica-
tions of differential equations. A fairly elementary treatment of several
topics of importance and of current interest and the inclusion of a large
number of examples and exercises should give the reader a better insight
into and understanding of the subject. I am sure that this work will be
of keen interest to mathematicians, engineers, and applied scientists.

V. LAKSHMIKANTHAM
Professor and Chairman
Department of Mathematics
University of Texas, Arlington



Preface

e

Ordinary differential equations find a wide range of application in
biological, physical, social, and engineering systems which are dynamic
in character. They can be used to effectively analyze the evolutionary
trend of such systems; they also aid in the formulation of these systems
and the qualitative examination of their stability under and adaptability
to external stimuli. Any attempt in these directions by either the applied
scientist or the mathematician has been largely one-sided. Generally, the
applied scientist concerns himself with specific instances of application
without going far into the fundamentals of the theory, whereas the
mathematician concentrates on the abstract theory, paying little or no
attention to the practical aspects. This text is designed to provide a bridge
between the applied and the theoretical aspects.

The volume is divided into five chapters. Chapter 1 introduces the
preliminaries needed for an understanding of what follows. In addition to
the existence and uniqueness theory, several useful and vital differential
and integral inequalities are included. The importance of the applications
of elementary functional analysis and topology is brought out by using
the fixed-point techniques to prove the existence and uniqueness theorems.

Chapter 2 deals with the fundamental properties of homogeneous and
nonhomogeneous linear systems as also the asymptotic behaviour of linear
systems with constant and variable coefficients.

One of the important aspects of the qualitative theory of differential
equations is the stability behaviour of solutions. In Chapter 3, the
concepts of Liapunov’s stability are introduced and theorems with worked
examples provided to distinguish various types of stability. The stability
of perturbed linear systems and an elementary treatment of two-dimensional
systems also feature in this chapter.

Chapter 4 is devoted exclusively to second order equations since such
a study yields, as in many areas of mathematics, much more information
than that obtained from general theorems. The stability, boundedness,
and oscillatory properties of solutions of second order equations relevant
in engineering and physics are also discussed in detail.

Chapter 5 discusses the application of Liapunov’s direct method to
the stability theory and the sufficient conditions for the stability and
instability of autonomous and nonautonomous systems, Also, converse
theorems on stability are developed and utilized to derive the properties
of solutions of perturbed systems.



Xii PREFACE

The book is the outcome of a course offered for several years at the
Indian Institute of Technology, Kanpur, to students of mathematics,
engineering, and physics. The content is so designed that it can serve
primarily as a basic text for a one-year course on ordinary differential
equations at the senior undergraduate or master’s level; by a judicious
omission of certain topics, it can be used also for a one-semester course.
The subject is developed keeping in mind the minimum exposure of any
student in the biological, physical, social, and engineering sciences to the
techniques of solution of ordinary differential equations, i.e., the elements
of calculus, linear algebra, and matrix analysis. All the functlons and
matrices considered are real, unless otherwise indicated. The large num-
ber of examples throughout the study and the exercises at the end of every
chapter are meant for the student’s better understanding of and self-
evaluation on the subject.

I recall with pleasure my association with Professors R. Bellman,
V. Lakshmikantham, and B. Viswanatham, who were the first to introduce
me to research in the theory of differential equations, and I am grateful
to them for their inspired guidance. Warm thanks are due also to
Professor Chris P. Tsokos for his painstaking reading of the manuscript
and his valuable suggestions for its improvement. The fruitful discussions
with my colleagues at the Indian Institute of Technology, Kanpur—
Professors P. C. Das, P. K. Kamthan, J. N Kapur, J. B. Shukla, and
R. S. L. Srivastava (of the mathematics department) and Professors
K. V. G. K. Gokhale, M. A. Pai, R. Subramanian, and V. Sundarara_lan
(of the engineering departments)—-helped to put in perspective the different
aspects of the areas covered; I gratefully acknowledge theu‘ helpful
comments. I take this opportunity to thank my students Dr. V. Sree Hari
Rao, Mr. P. Srinivas, and Mr. Mohd. Faheem for their patient scrutiny
of the manuscript. I record too my apprematlon of the financial assistance
granted by the Educational Development Centre at the Indian Institute
of Technology, Kanpur, for the preparation of the manuscript.

I will greatly value any improvements in the text that readers would
like to suggest.

. November 1979 M. Rama Mohana Rao
Indian Institute of Technology :
Kanpur -
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1

Existence, Uniqueness, and
Continuation of Solutions

1.1 INTRODUCTION

Most dynamical systems—physical, social, biological, engineering—are
often conveniently expressed in the form of differential equations. Such
equations can provide an insight into the behaviour of a system if they
represent the various important factors governing the system. For
instance, when a system is known to perform efficiently over a certain
range of input, the existence of the solutions of the differential equation
governing the system over the interval concerned is an important conside-
ration in the understanding of its behaviour. A scientist or an engineer
can use differential equations in his work more confidently if he is
conversant with the theory of existence, uniqueness, and continuation of
solutions. Similarly, a mathematician who is familiar with these properties
of solutions is better equipped to develop further mathematical methods
for examining the behaviour of solutions of differential equations.

This chapter introduces the existence, uniqueness, and continuation of
solutions. Besides the classical methods, fixed-point techniques are
employed in proving some of the existence and uniqueness theorems.

1.2 NOTATION AND DEFINITIONS

In our discussion, the independent variable is always treated as real and
is denoted by ¢. Further, the dependent variables, u for scalar equations
and x for vector-valued equations, as also all the functions are assumed
to be real. However, the theory developed in this chapter can, with minor
modifications, be extended to the complex case.

Let R be the set of all real numbers, and I be an open interval on the
real line R, thatis, /= {t:t & R, r; < t < ry}, where r; and r, are any
two fixed points in R. Also, let R"denote the real n-dimensional euclidean
space with elements x = (xy, X3, ..., X,), and let R**! be the space of
elements of (n + 1)-triple (¢, x, X2, .. ., X,) or (¢, x). We shall often use R
instead of R!. Let B be a domain, i.e., an open-connected set in R*!, and
C[B, R"] be a class of functions defined and continuous on B, taking values
in R". When fis a member of this class, we shall write f € C[B, R"].
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An ordinary differential equation of the n-th order and of the form
Bl vl . a0 (1.2.1)

where u™ is the n-th derivative of the unknown function # with respect to
¢t and F is defined in some subset of R*2, expresses a relation between the
(n + 2)-variables ¢, u, ', u”, ..., u™. Because of its implicit nature, -
(1.2.1) may represent a collection of differential equations. For example,
the implicit equation u’3 — 3#2u'? 4 3uu’ = 0 leads to three equations,
namely,

u =0, u' = (312 + (912 — 12u)13))2,
u' = (312 — (92 — 12u)'2))2.
In order to avoid the ambiguity the implicit equation (1.2.1) may

exhibit, we shall assume that this equation is solvable for u™; then, it
can be written in the form

U™ = g(t, u, u'y ..., u" D), (1.2.2)

where g is a given function defined on B. If g is linear in u, o', ..., u™"D,
then the differential equation (1.2.2) is called linear; otherwise it is referred
to as nonlinear.

Definition 1.2.1 (solution) A function u = ¢(¢) is called a solution of
(1.2.2) onr; < t < r,if ¢ isdefined and n-times differentiableonr; < t<r,
and satisfies

(1) = &g(t, (1), $'(1), . .., 47D, E (1, 7).

The functions uy(f) = > and wuy(¢) =1/t are the solutions of the
differential equation u” = 2u/t?, ¢t > 0. Similarly, the functions u;(¥) = 1,
uy(t) = cos t, and u,(t) = sin ¢ are the solutions of "’ + ' = 0 for all ¢.

System of Differential Equations

We shall consider a system of first order differential equations of the form

x; =fl(t> xh X2 o0 0y xn)
MRt Ko .25 %3)
i ; : t] s n (1.2'3)
’
Xn =fn(t9 X1y X25 000y xn)
where fi, f2, . . . , f» are n given functions in some domain B of (n + 1)-
dimensional euclidean space R**! and x;, x3,..., X, are n unknown

functions. A set of n-functions ¢,, ¢,, . .. , ¢, defined on I is said to be a
solution of (1.2.3) on I if, for t € I,

@) S1(2)s - - . » u(t) exist;
(ii) the point (¢, ¢,(¢), . . . , $,(¢)) remains in B; and
(i) Si(®) =fit, $1(D)s .« > $u®))y i=1,2, ..., 1.
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Geometrically, this amounts to saying that a solution of (1.2.3) is a curve
in the (n 4 1)-dimensional region B with each point p on the curve and
has the coordinates (¢, ¢;(2), . . ., $4(2)), where ¢i(?) is the i-th component
of the tangent vector to the curve in the direction x;. When n = 1, this
interpretation is clear, and thus the curve in B defined by any solution of
(1.2.3) is again a solution curve.

An n-th order differential equation of the form (1.2.2) may also be
treated as a system of the type (1.2.3). To see this, let

u=uy, U =uy ..., u" ) =uy,
Then, (1.2.2) is equivalent to

Ui = Uiy, i=1"2/..., t=1;

s = 2(t, uy, s, . . - Uy).

This set of equations is indeed of the form (1.2.3). In particular, consider
the second order differential equation

u' + u'? = g(t, u), (1.2.4)

where g is a given function. Setting ¥ = u; and u’ = u,;, we have the
system

up=uy, uy=—ul+ g, uy). (1.2.5)
This is a special case of (1.2.3) with n =2, fi(¢, u;, u) =u,, and
a2, uy, u3) = —u3 + g(t, u;). It can be easily verified that (1.2.4) and

(1.2.5) are equivalent. For this, let ¢ be a solution of (1.2.4) on I. Then,
u; = ¢(t), uy = ¢'(t) is a solution of (1.2.5) on / since

up=¢' = uy,
ué = ¢” et —¢'2 + g(t’ ¢) = '_u% + g(t9 ul)'

Conversely, let (¢;, ¢,) be a solution of (1.2.5) on I. Then, u = ¢,(¢),
that is, the first component, is a solution of (1.2.4) on I since

U= ¢l = ($1) = p2= —¢3 + g(t, 1) = —u'? + g(¢, u).
Vector-matrix notation

A system of equations of the form (1.2.3) can always be written as a
single vector-valued equation by introducing the n-dimensional column
vector

X1

x=|*2

= col (x1, X2, . . . , Xa).
%
Let x(#) be the vector-valued function defined by
x(t) = col (xy(?), . . . , xa(1)).
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Similarly, let f be the vector-valued function given by
.fl(t’ X1s X25 ¢ 00 xn)
fit,x) = | L2 X0 X205 %) | = col (Fi(ty X), falts %), -+ 5 £ilt, %))

j},(f, X1, X2 000y xn)
Then, (1.2.3) can be expressed as
x =1, X). (1.2.6)

By a solution of (1.2.6) on I we mean a vector-valued function ¢ with
components ¢, ¢, . .., ¢, which satisfies

(, ¢(1) = (@ $1(8)s . - - ¢n(t)) € B, . tel,
¢'(t) = f(t, $(1)), tel
Equation (1.2.6) is usually referred to as a nonautonomous differential
system. A differential system of the form
x' = f(x), (1.2.7)
in which the right-hand side does not involve the independent variable ¢,
is said to be autonomous. An important feature of (1.2.7) is that if ¢(¢)
is a solution of (1.2.7) on r; < t < ry, then ¢(t — #y) is a solution on
to + r; < t < ty + r,. Further, it is sometimes convenient to represent
the solutions of (1.2.7) in the (¢, x)-space as curves in the x-space with ¢

as a curve parameter. Such curves are called trajectories and the space
that contains these is known as the phase space of (1.2.7).

Linear case

Consider a system of first order linear differential equations of the form
x1=an()x; + ...+ ap(t)x, + by(?)
X3 = ay(t)xy + . . . + ax(t)x, + ba(2)

Xn = u ()X + . . . + @u(0)Xn + by(2)
or

x; = jZl a”(t)Xj + bi(t), 1 & l, 2, RS (1.2.8)

where a;(f)s Lj=1,2,...,n bft), i=1,2,...,n, are real-valued
functions defined on 7, and x(¢) = (x,(¢), ..., x,(¢)) is an unknown n-
dimensional vector-valued function. Let A(¢) = (a;;(¢)) be an n X n matrix
and B(#) be an n-vector (by(¢), ba(t), ..., bu(t)). Then, (1.2.8) can be
written as

x' = A(t)x + B(1). : (1.2.9)

This is a special case of (1.2.6) with f(z, x) = A(f)x + B(f), A(t)x being
the usual matrix-vector product. Equation (1.2.9) is referred to as a
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nonhomogeneous linear differential system, but when B(¢) = 0, it is called
a homogeneous linear system.

An important special case of (1.2.9) is the n-th order linear differen-
tial equation

u™ 4 a,(Hu"V + ... 4 a,(t)u = b(2). (1.2.10)
This is of the type (1.2.8). To see this, let
u=u,u =uz ..., u"V =y,

Then, (1.2.10) is equivalent to

up = Uy, D= tay Ly,
Uy = —ay()uy — @y (Dt — . . . — ay()un + b(t).
When n = 3, (1.2.10) takes the form (1.2.9) with
U 0 1 0 0
=l - A() = 0 0 1 s By =10
u3 —aj(t) —ax(t) —ay(t) b(1)

Functional Analysis—Brief Review
For any vector x € R", we define the scalar quantity by

[lx]| = ié x4 (1.2.11)

and call it the norm of x.
Definition 1.2.2 The norm ||x|| of a vector x &€ R" is a real-valued func-
tion satisfying the properties
@) |Ix|| = 0 with ||x|| = 0 if and only if x = 0;
(ii) ||Ax|| = [A] ||x|| for any scalar A; and
(iii) [l + 21| < Ixll + il %,y € Re.

Besides the norm defined by relation (1.2.11), we shall use, in
Chapter 5, the usual euclidean norm

el = 2 x?
i=1
which also satisfies properties (i), (ii), and (iii).

Definition 1.2.3 A linear space or vector space X is a nonempty collec-
tion of objects, called vectors, of which one is a zero vector (denoted by
0), which can be added pairwise and multiplied by any scalar, consistent
with axioms (i) to (ix). That is, for all vectors x,y,z € X and for all
scalars a,8 € R,
Dx+y=y+x
i) x+N+z=x+ @ +2);
(iii) a(x + y) = ax + ay;
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(iv) a(Bx) = (aB)x;
) (@ + B)x = ax + Bx;
i) Ix=x;

(vii) 0 + x = x;

(viii) Ox = 0; and

(ix) x — x=0.

A normed linear space is a linear space X if, for every x in X, there
exists a real-valued function, denoted by ||x|| and called the norm of x,
satisfying properties (i), (ii), and (iii) of Definition 1.2.2. For convenience,
the notation || -||x is sometimes used for the norm on X. A sequence {x,}
of vectors in a normed linear space X is said to converge to the point x in
X if, for every positive number e, there exists a positive integer N = N(e)
such that ||[x — x,||x < e for all (and not merely some) integers n exceed-
ing N. This is often written as lim x, = x.

n—>m
Definition 1.2.4 (Cauchy’s sequence) A sequence {x,} in X is called a
Cauchy (or fundamental) sequence if, for every positive number e, there
exists a positive integer N = N(e) such that ||x, — x,||x < ¢ whenever both
m and n exceed N.

A normed linear space X is said to be complete if every Cauchy
sequence in X converges to an element in X.

A sequence may be a Cauchy sequence in X but need not converge to
an element in X. For example, consider the subspace X = (0, 1] of the
real line. The sequence defined by x, = 1/n is easily seen to be a Cauchy
sequence in this subspace but it is not convergent since 0 (to which it
converges) is not a point in this subspace. Thus, the subspace (0, 1] is not
complete.

Definition 1.2.5 A complete normed linear space is called a Banach
space.

Example 1.2.1 (i) The space R of real numbers is the simplest of all
normed linear spaces. The norm of an element x in R is defined by ||x|| = |x|
and this space is a Banach space.

(ii) The space R" of all n-tuples x = (xy, x5, . .., x,) of real numbers
is a linear space with addition and scalar multiplication defined compo-
nentwise. R” is a Banach space if the norm ||x|| is given by

n n
sup [4], or 2 x| or (X x)i?
i i=1 i=1
since R" is complete.

(iif) The space
b
L*(a, b) = {f:fis measurable and J‘ |f(@)P dt < oo}
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is a Banach space with the norm of f given by

= 1o ae]

(iv) Let p be a real number such that 1 < p < . The space /, of
all sequences {x,} of scalars such that

[}
2 ]x,l" < ®
i=1
with the norm defined by
n
el = (£ Jxeyie
is a Banach space since it is complete.

Definition 1.2.6 A set {y € X:|ly — x||x < ¢ for any element x of a
normed linear space X is said to be an e-neighbourhood of x.

A set S in X is open if every element x of S has an e-neighbourhood,
every element of which belongs to S.

Given a subset S of X and an element x of X (not necessarily con-
tained in S), we say that x is a limit point of S if, for every positive
number e, there exists at least one element y belonging to S and distinct
from x such that ||x — y||x < e.

A set S is said to be closed if it contains all its limit points.

A set S, togethef with all its limit points, is called the closure of S
and is denoted by S.

A set S is bounded if all its elements lie within a circle of sufficiently
large radius. For example, the points in a rectangle form a bounded set
whereas those on a straight line do not.

If SC X, A4 CR, and {V },cr is a collection of open sets in X such
that Sc U V,, then V, is called an open covering of S.
acR
Definition 1.2.7 A set S is said to be compact if every open covering of
S has a finite subcover, that is, every open covering of S contains a ﬁmte
number of open sets which cover S.

In particular, if S is a subset of a Banach space, then S is compact if
every sequence {x,} in S contains a subsequence which converges to an
element in S. For example, a set S in R” is compact 1f and only if it is
closed and bounded.

Definition 1.2.8 A nonempty subset S of a linear space X (not necessa-
rily normed) is said to be convex if, for every pair of vectors {x, y}
belonging to § and for every real number a in the interval [0, 1], the
vector ax + (1 — a)y also belongs to S.

Any ball, open or closed, in a normed linear space is always convex.



