hR #

SECOND EDITION

TI— »
PROGRAMMING
 LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

PRENTICE HALL SOFTWARE SERIES

Brian W. Kernighan
Dennis M. Ritchie

LM T b AR 4t

China Machine Press

CRAFRHES

The C Programming Language
(Second Edition)

Brian W. Kernighan =
Dennis M. Ritchie

China Machine Press

Original edition, entitled THE C PROGRAMMING LANGUAGE, 2nd Edition, 0131103628 by
KERNIGHAN, BRIAN W_; RITCHIE, DENNIS M., published by Pearson Education, Inc, publishing
as Prentice Hall PTR, Copyright © 1988, 1978 by Bell Telephone Laboratories, Incorporated.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording or by any information

storage retrieval system, without permission from Pearson Education, Inc.
China edition published by PEARSON EDUCATION ASIA LTD., and CHINA MACHINE

PRESS, Copyright © 2006.
This edition is manufactured in the People’s Republic of China, and is authorized for sale only

in People’s Republic of China excluding Hong Kong, Macau and Taiwan.

45 J X R EMAR i Pearson Education Asia Lid 2 AUHLA Tolk thAR#1 s HAR . KL HME S

EVFR], FRLUMEMTAEHRDREBHE.
(RBRF e ARILFIEBREN (RO EFE. B MR E G EX) HERT.
A A3 H Wi Pearson Education (BAEKFHRER) BOLM %, THREE S HHE.

IREUERE, @BLER.
FHERME JETRERITEEAT

APIRIRITE . @ 01-2006-3993

BEHEREE (CIP) ¥R

CRARIES (FXM - #2M) / (%) %ER (Kernighan, B. W.) %% - b5t HURT

Wk, 2006.8

(SRR E)
4548 3¢: The C Programming Language, Second Edition

ISBN 7-111-19626-0
1.C- ‘H.E‘E,-" . CigE - BFixit —%xx I.TP312
s E AR A B FECIPHIEE 3 (2006) $F0809265

PUBR Tl HAR#E (b s & 5/ A#228 #RBCRI 100037)
TG RIEE

LR EENRIA R A SIETR] - BB ELRRITMEST
200648 745 LRECE L vk ENRI

170mm x 242mm - 17.75E03k

Efr: 35.005%

EaAEE, AT, B, 871, B2 T5iER
A Ehek: (010) 68326294 '

tEhiRE 8915

XEE MU, BB EBmnsE SR ERARE, k5 ERER R
ARG TR WIER XSS, EXEERFEEALRIN
TEERLRXEY. BERE. EHLAHERS, EENT LR ST FELEE
FHE S, HEILER PR E R LA FEM S OF B FRRIL, Rkl 4
HZHFFEE, NNERTHRANEE, CRETHFARNELE, BREBERILE,
X HAEENE, KO EHASEE A RS s .

LA, TE2REBAKREES T, BEMNHEILERRE, EWAFFE
KBREY. XHFHBEHEETFMHBRAEEIE, WEHR, T kB RR
EHREFRE LEHA¥ERE. EREGEEHERRRIAEEE. A REDHBLRT,
(HZEREEREXHEIBERROLTFERBRASHAEMNATFLEGEEZ
fb. K, 5ldE—#EIMEE I EILEM B B E BB E F LR R RERRAH
HEM, LSRN, BIEHEMNER KK FNLHZE.

PLBE Tk AR EE X E B ARA R EEINE “HREAEFIRS. H1998
I, EEATRKN THEEAKRE T#E. BIEEIMBEM L. 23)LERAHR
%4, #f15Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan Kaufmann% {H: 5
EABRATIEY TRIFFASERR, WEMNIA NS E M HE4 % H Tanenbaum,
Stroustrup, Kernighan, Jim GrayZF KU &R —#HLHMER, LI “UHEHLFZENAE
FHERHAR, iEHEC]. HARERER. AEALQENOHTE, WEARTIXEMNBH
AR, |

“UEILBHEAS” MR TESS TERNIIMEENRHDERE, BERNNERANE
HTHENEEES, CAFFEHBETHIFNEFENLIAE, mEBOESLEY
FKEHEMEPEAEE, FRCEERARBHFEREF. €4, “HEILBEAR
CEUR THEEN WP, XERBEAREPRLTRFMNOME, HEFLEECRAN
EXEHSEBE, AP 5RBEITT T IRLAEM.

B E#FRIZNP ZEMBM S ENZHENL, BEFRXEIMNTEILBAER
MR AP A —AFHER. A, REATEMASIHBMHOHE, £ “CEHT
FLEH Y 2 THR=ARFIMHENLEM: B “HEBFEANE" 24, SHENRK
Bé, MpmApd “28FKRBE" ; B, sI#LEETHNEEHED
“Schaum’s Outlines” ZRFIHK “@XLHFIAFIART". I TRIEXZENBHIBUE
., RIEHA T B AERMEMIRS , EEATEETPEBER. LK%,
Eek¥. ERFREAY. EEHX%¥. FESERY. BRA%. LK%, dEB

iv

BR%E. MRETIAY. ALRERY. PEARKE. EFMEME LY. b
WREE K. Ik, MEREET RS, BIMKE. BILI¥k. PEEREER2
WPEANEF O FEENE A RFRRFIAE T EIN SN MBI ELREEANR K
/EERE, ABRNHBEEEE LR EE.

XZENBRMPHE R EWERINEBMS H, HENESERT LR AR
LB ESITEN. RPFSHEMBHEAM. 1. T, Stanford, U.C. Berkeley, C.
M. U. SR 2MA¥FERA. AUEE TR, BESH. BIERE. HRILE
RN, BiEE. RiFFE. KETE. BRE. EE5NE. BEEESEANAE
HENLES LB FRMNEOIEE, MASARE—ANHAEBESRUIEZTE. AW
Fe=+HEmMAFE. AREH2URNILERERRM. X% 5 F LK E
FESIZF, RELHATENRZENERPHEEMAE.

BEHES . BB, —HEE. MHROEE. BANRE, XEREER
TMEBETHREMNRIE, HEMNOERERERE, MRIRMHELELBRITAT X
—S{ M EFNEELD. BHMHOHRARBINEERSEA . EEATRAENM
FRE W BA LR HEILEES THRIE, BRINMWEKRSEMT:

B, FHBME: hzjsj@hzbook.com
BEEBIE: (010) 68995264
BARMAE: e TR E T ERESS
B EL 4RA%: 100037

ERIEEERE

(Rt R 2B T)

I om BEE LB LEK
g & EF X#Er REHR
FHE FFE FRHY BAF
WA AR HKa#H Akt
A%k 0 EWE T 9
mMME HER EEE O EEX
Mox A e AE2RZ #E
R

4 M 19785 (The C Programming Language) — % RAK, HIAREH T —
XL, KA HENA A AR RARR K, AAAFEGHRELTLE T 5 FATHX
Mg £, AwiE, CETHLAMERES, AARTFLLE T €4 HUNIX
B AR BATE T HIME,

CETEAMAANEHEMUARZESTAINOAR, MZRSBBRFEET 54K
HAH AR ABER, HAX—AERFCEZTH—AMLABRIRRMHH, REN
g xR TL, 1983%F, LEERIFANE (ANSI) KL T —AFERL, LAHRRAF
A ARHLE AANBREEMNCETRL, MANLERMCETRA
“Hab”, R XA TCiETHANSHF A,

ANSIHE A T — 2 A KB B 1R PR BA2TH LM EALEH, HAlXEHRMA
Fotc b, BARRIERBET —AHAHHRF AN X, AHARATA P EH KLt
Hahdt, HAPE#FMALAT —ANELARARA/ME. NATERFHERAEF
FRIBEARAE, CHARILA T LCESTRIEZ L P H MK LMY,
BIBiLRA# 7T CiEE F 5 Atk BAn X o) — 45,

AP E2RABHRANSIHR AR L HCiES ., REAMNCRERITHETFLE
T T s, EANEARATAXEZRFECMNAHHBX, REEHRAEAR, #H18
BAZMAZAAKDEN,; RAIHERRAIKAGEAFEL, BNHLKFSCLE
e 45 3 M AT RO KR 54,

EMBERIBEHABEIRGB IR, CETHRRA—FXYEST, LERERA—
FARSE 6 5 RAG L. RAVEPR—ERHR (Fbiodist) HET A, TRCETA
Bkt e, AMEMA AT GH TR THE, FEXREE T T M T —2HH
F. 4o, KRBT ERAZSTLEAFARFTLE, ARLEOFARRHBEN
it R AT, BAT—RRT OB F—H, KR PR B FAUT RSB &I LA
XEHEL T AR,

BRARE—AAEFH, RIEFA, KINA 2B 65 BRER AT HEAE,
AMAHONEARNAEAR RFREMET RS, ARANBEBOELELRE—A
HHRHT L — X ERETHAESHRAAE. REBHIFAEARKOAERTT
B4 CRAMRAEOAFRPIELEBEAE G, B RCHANSIHF A4 T AR K A
P ey T 24T T N,

AMAESIRTEHit: ‘MERALLEM, EAFARKBEINFHF,

viil

B HILFHEE, SNBRX 2N, AMNAZEXAHRGH Y kA FIFHRNFCHE

4% B B A A E R A I A M1, Jon Bentley, Doug Gwyn, Doug Mcllroy,
Peter Nelsonf=Rob Pike JU-F3 A 4 545854 — A AR & 7T N, KM3EF &A#Al Aho,
Dennis Allison. Joe Campbell, G. R. Emlin, Karen Fortgang, Allen Holub, Andrew
Hume. Dave Kristol. John Linderman, Dave Prosser, Gene Spafford#=Chris Van Wyk
FA, WliMFmiEi 7 A, KMN4LAE T & ABill Cheswick, Mark Kernighan, Andy
Koenig. Robin Lake, Tom London, Jim Reeds. Clovis TondoA=Peter Weinberger ¥ A
JRAF 33, Dave Prosser) £ M1 % T ik 3 % FANSIHF A& #9407 P A, KM XEkR
A 7 Bjarne Stroustrupt‘r{:C++&}i§7f§.}§-i&ﬁﬁf?éﬁz%‘w*l‘?)l']i%(.o Dave Kristol 4 #4248 7
— ANANSI C% % %4 4 47 R 4 #9 M X, Rich Drechsler# gy A MN# /7T X FHHIM T

.
o o Bl A A

Brian W. Kernighan
Dennis M. Ritchie

CETRA—MARNAFRTET, AHLOEATHAAKX. AFOEHRAFK
M, FEHEHAEF. CETRA M “RIJL MHiET, LR “BX", #HHL
TERTFTE MO RAMK, 22, CETHRA Y, BRAME, XBFTIL—K
NANARBRGETREALIE, AELG,

C#% 3 & # % @ Dennis Ritchie %y UNIX4RAF £ 48183149, J £DEC PDP-113+ HLAL L 5%
. UNIXBRAF R %, CHFEBAILFHA HUNIXE AAZAF (L1655 KB A2 GA
$tt) RRAACETHEL, AN, THXEATFTLRNENLHEFS &, HIBM
System/370. Honeywell 60004=Interdata 8/32%, {22, CiET REMFETH R AMNE R
A, BRACTUREDHGBE b REGBHTAEBTANA AKCESTHNE LA,

ABABARTEYEEF I TACETHEAS. KRBT LA —A 45 dkeh3)
T, BNRBHAPRABRREALED, MEATRANTTPARTCETHEIMHLE
Hi;, AHMRYTLEE—HAEFH., KPR ARHEETH— LA,
MRRAMENAGRG, ACHBRG, BREEXLGFREGF ARG F 4
I, BFPHXFH THRTUAALBZERES, A TARRLHEFL, A H
T O LAMATHNE FIE AN X ABEL T AKX, BT KT IfTH ZEE R E
o, AMNERATREAZ ST EQBRENB LSRN E L. RIFAHLARTR
VL BOEH & R A,

AHFHTRR—AH XAF LT ONTHRFH, €2 LEE5 R XRG4 LTRSS,
wwEEF, REEY., BHALHHF., AENib, WANAEAAFRABRS SRS, H 4
FRCEZT, SR, il 8+ F, FIREKAMES,

RERMNGZE, CEZTRA A SARRY, AARBAARHIGENGEST, &
ETREBEEMNAEF. CEHFT, FAMARRNGLRYIE R, A48 8T
SREF, AMNALZRABEF S AFCET,

RA*SMAARFAPFRIPREDTRBGEIRA, LEANAEHEADT
A2 P % & B X, &bt A Ei#tMike Bianchi, Jim Blue, Stu Feldman, Doug Mcliroy.
Bill Roome, Bob RosinfeLarry Rosler¥ A, #1m S g 7T KPHéh % L5 &R A,
A M A 2L £ A #Al Aho, Steve Bourne, Dan Dvorak, Chuck Haley. Debbie Haley .
Marion Harris, Rick Holt, Steve Johnson. John Mashey, Bob Mitze. Ralph Muha,
Peter Nelson. Elliot Pinson. Bill Plauger. Jerry Spivack, Ken Thompson#=Peter
Weinberger§ A, M ARBMERE TEFTH AHE L, HIFLEE LA #Mike LeskAo
Joe Ossanna, #efl) HEpe 5 B4 F T AR ER A I,

Brian W. Kernighan
Dennis M. Ritchie

F
FURF

Introduction

Chapter 1. A Tutorial Introduction

1.1
1.2
13
1.4
1.5
1.6
1.7
1.8
1.9
1.10

Getting Started

Variables and Arithmetic Expressions
The For Statement

Symbolic Constants

Character Input and Output

Arrays

Functions

Arguments—Call by Value
Character Arrays

External Variables and Scope

Chapter 2. Types, Operators, and Expressions

2.1
22
23
24
25
2.6
27
28
29
2.10
2.11
2.12

Variable Names

Data Types and Sizes

Constants

Declarations

Arithmetic Operators

Relational and Logical Operators
Type Conversions

Increment and Decrement Operators
Bitwise Operators

Assignment Operaters and Expressions
Conditional Expressions

Precedence and Order of Evaluation

Chapter 3. Control Flow

3.1
3.2

Statements and Blocks
If-Else

Contents

vii

33
34
35
36
37
3.8

Chapter 4.
4.1
4.2
43
4.4
4.5
4.6
4.7
4.8
49
4.10
4.11

Chapter S.
5.1
5.2
5.3
54
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12

Chapter 6.
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Chapter 7.
7.1
7.2

Else-If

Switch

Loops— While and For
Loops—Do-while
Break and Continue
Goto and Labels

Functions and Program Structure
Basics of Functions

Functions Returning Non-integers
External Variables

Scope Rules

Header Files

Static Variables

Register Variables

Block Structure

Initialization

Recursion

The C Preprocessor

Pointers and Arrays

Pointers and Addresses

Pointers and Function Arguments
Pointers and Arrays

Address Arithmetic

Character Pointers and Functions
Pointer Arrays; Pointers to Pointers
Multi-dimensional Arrays
Initialization of Pointer Arrays
Pointers vs. Multi-dimensional Arrays
Command-line Arguments

Pointers to Functions

Complicated Declarations

Structures

Basics of Structures
Structures and Functions
Arrays of Structures
Pointers to Structures
Self-referential Structures
Table Lookup

Typedef

Unions

Bit-fields

Input and Output
Standard Input and Output
Formatted Output—Printf

Contents xi

57
58
60
63
64
65

67
67
71
73
80
81
83
83
84
85
86
88

23
93
95
97
100
104
107
110
113
113
114
118
122

127
127
129
132
136
139
143
146
147
149

151
151
153

xit Contents

7.3
7.4
1.5
7.6
1.1
7.8

Chapter 8.
8.1
8.2
83
8.4
8.5
8.6
8.7

Variable-length Argument Lists
Formatted Input—Scanf

File Access

Error Handling—Stderr and Exit
Line Input and Output
Miscellaneous Functions

The UNIX System Interface

File Descriptors

Low Level I/0—Read and Write

Open, Creat, Close, Unlink

Random Access--Lseek

Example—An Implementation of Fopen and Getc
Example—Listing Directories

Example—A Storage Allocator

Appendix A. Reference Manual

Al
A2
Al
A4
AS
A6
A7
A8
A9
Al0
All
Al2
Al3

Appendix B

B1
B2
B3
B4
BS
B6
B7
B3
B9
B10
B11

Introduction

Lexical Conventions
Syntax Notation
Meaning of Identifiers
Objects and Lvalues
Conversions
Expressions
Declarations
Statements

External Declarations
Scope and Linkage
Preprocessing
Grammar

. Standard Library

Input and Output: <stdio.h>
Character Class Tests: <ctype.h>
String Functions: <string.h>
Mathematical Functions: <math.h>
Utility Functions: <stdlib.h>
Diagnostics: <assert.h>

Variable Argument Lists: <stdarg.h>
Non-local Jumps: <setjmp.h>
Signals: <signal.h>

Date and Time Functions: <time.h>

Implementation-defined Limits: <limits.h> and <float.h>

Appendix C. Summary of Changes

Index

155
157
160
163
164
166

169
169
170
172
174
175
179
185

191
191
191
194
195
197
197
200
210
222
225
227
228
234

241
241
248
249
250
251
253
254
254
255
255
257

259
263

introduction

C is a general-purpose programming language. It has been closely associ-
ated with the UNIX system where it was developed, since both the system and
most of the programs that run on it are written in C. The language, however, is
not tied to any one operating system or machine; and although it has been
called a “system programming language” because it is useful for writing com-
pilers and operating systems, it has been used equally well to write major pro-
grams in many different domains.

Many of the important ideas of C stem from the language BCPL, developed
by Martin Richards. The influence of BCPL on C proceeded indirectly through
the language B, which was written by Ken Thompson in 1970 for the first
UNIX system on the DEC PDP-7.

BCPL and B are “typeless” languages. By contrast, C provides a variety of
data types. The fundamental types are characters, and integers and floating-
point numbers of several sizes. In addition, there is a hierarchy of derived data
types created with pointers, arrays, structures, and unions. Expressions are
formed from operators and operands; any expression, including an assignment or
a function call, can be a statement. Pointers provide for machine-independent
address arithmetic.

C provides the fundamental control-flow constructions required for well-
structured programs: statement grouping, decision making (if-else), selecting
one of a set of possible cases (switch), looping with the termination test at the
top (while, for) or at the bottom (do), and early loop exit (break).

Functions may return values of basic types, structures, unions, or pointers.
Any function may be called recursively. Local variables are typically
“automatic,” or created anew with each invocation. Function definitions may
not be nested but variables may be declared in a block-structured fashion. The
functions of a C program may exist in separate source files that are compiled
separately. Variables may be internal to a function, external but known only
within a single source file, or visible to the entire program.

A preprocessing step performs macro substitution on program text, inclusion
of other source files, and conditional compilation.

C is a relatively “low level” language. This characterization is not

2 INTRODUCTION

pejorative; it simply means that C deals with the same sort of objects that most
computers do, namely characters, numbers, and addresses. These may be com-
bined and moved about with the arithmetic and logical operators implemented
by real machines.

C provides no operations to deal directly with composite objects such as
character strings, sets, lists, or arrays. There are no operations that manipulate
an entire array or string, although structures may be copied as a unit. The
language does not define any storage allocation facility other than static defini-
tion and the stack discipline provided by the local variables of functions; there is
no heap or garbage collection. Finally, C itself provides no input/output facili-
ties; there are no READ or WRITE statements, and no built-in file access
methods. All of these higher-level mechanisms must be provided by explicitly-
called functions. Most C implementations have included a reasonably standard
collection of such functions.

Similarly, C offers only straightforward, single-thread control flow: tests,
loops, grouping, and subprograms, but not multiprogramming, parallel opera-
tions, synchronization, or coroutines.

Although the absence of some of these features may seem like a grave defi-
ciency (“You mean I have to call a function to compare two character
strings?”), keeping the language down to modest size has real benefits. Since C
is relatively small, it can be described in a small space, and learned quickly. A
programmer can reasonably expect to know and understand and indeed regu-
larly use the entire language.

For many years, the definition of C was the reference manual in the first
edition of The C Programming Language. In 1983, the American National
Standards Institute (ANSI) established a committee to provide a modern,
comprehensive definition of C. The resulting definition, the ANSI standard, or
“ANSI C,” was completed late in 1988. Most of the features of the standard
are already supported by modern compilers.

The standard is based on the original reference manual. The language is
relatively little changed; one of the goals of the standard was to make sure that
most existing programs would remain valid, or, failing that, that compilers could
produce warnings of new behavior.

For most programmers, the most important change is a new syntax for
declaring and defining functions. A function declaration can now include a
description of the arguments of the function; the definition syntax changes to
match. This extra information makes it much easier for compilers to detect
errors caused by mismatched arguments; in our experience, it is a very useful
addition to the language.

There are other small-scale language changes. Structure assignment and
enumerations, which had been widely available, are now officially part of the
language. Floating-point computations may now be done in single precision.
The properties of arithmetic, especially for unsigned types, are clarified. The
preprocessor is more elaborate. Most of these changes will have only minor

THE C PROGRAMMING LANGUAGE 3

effects on most programmers.
A second significant contribution of the standard is the definition of a library

to accompany C. It specifies functions for accessing the operating system (for
instance, to read and write files), formatted input and output, memory alloca-
tion, string manipulation, and the like. A collection of standard headers pro-
vides uniform access to declarations of functions and data types. Programs that
use this library to interact with a host system are assured of compatible
behavior. Most of the library is closely modeled on the “standard 1/0 library”
of the UNIX system. This library was described in the first edition, and has
been widely used on other systems as well. Again, most programmers will not
see much change.

Because the data types and control structures provided by C are supported
directly by most computers, the run-time library required to implement self-
contained programs is tiny. The standard library functions are only called
explicitly, so they can be avoided if they are not needed. Most can be written in
C, and except for the operating system details they conceal, are themselves port-
able.

Although C matches the capabilities of many computers, it is independent of
any particular machine architecture. With a little care it is easy to write port-
able programs, that is, programs that can be run without change on a variety of
hardware. The standard makes portability issues explicit, and prescribes a set
of constants that characterize the machine on which the program is run.

C is not a strongly-typed language, but as it has evolved, its type-checking
has been strengthened. The original definition of C frowned on, but permitted,
the interchange of pointers and integers; this has long since been eliminated, and
the standard now requires the proper declarations and explicit conversions that
had already been enforced by good compilers. The new function declarations
are another step in this direction. Compilers will warn of most type errors, and
there is no automatic conversion of incompatible data types. Nevertheless, C
retains the basic philosophy that programmers know what they are doing; it only
requires that they state their intentions explicitly.

C, like any other language, has its blemishes. Some of the operators have
the wrong precedence; some parts of the syntax could be better. Nonetheless, C
has proven to be an extremely effective and expressive language for a wide
variety of programming applications.

The book is organized as follows. Chapter | is a tutorial on the central part
of C. The purpose is to get the reader started as quickly as possible, since we
believe strongly that the way to learn a new language is to write programs in it.
The tutorial does assume a working knowledge of the basic elements of pro-
gramming; there is no explanation of computers, of compilation, nor of the
meaning of an expression like n=n+1. Although we have tried where possible to
show useful programming techniques, the book is not intended to be a reference
work on data structures and algorithms; when forced to make a choice, we have

concentrated on the language.

4 INTRODUCTION

Chapters 2 through 6 discuss various aspects of C in more detail, and rather
more formally, than does Chapter 1, although the emphasis is still on examples
of complete programs, rather than isolated fragments. Chapter 2 deals with the
basic data types, operators and expressions. Chapter 3 treats control flow:
if-else, switch, while, for, etc. Chapter 4 covers functions and program
structure—external variables, scope rules, multiple source files, and so on—and
also touches on the preprocessor. Chapter 5 discusses pointers and address
arithmetic. Chapter 6 covers structures and unions.

Chapter 7 describes the standard library, which provides a common interface
to the operating system. This library is defined by the ANSI standard and is
meant to be supported on all machines that support C, so programs that use it
for input, output, and other operating system access can be moved from one sys-
tem to another without change.

Chapter 8 describes an interface between C programs and the UNIX operat-
ing system, concentrating on input/output, the file system, and storage alloca-
tion. Although some of this chapter is specific to UNIX systems, programmers
who use other systems should still find useful material here, including some
insight into how one version of the standard library is implemented, and sugges-
tions on portability.

Appendix A contains a language reference manual. The official statement of
the syntax and semantics of C is the ANSI standard itself. That document,
however, is intended foremost for compiler writers. The reference manual here
conveys the definition of the language more concisely and without the same
legalistic style. Appendix B is a summary of the standard library, again for
users rather than implementers. Appendix C is a short summary of changes
from the original language. In cases of doubt, however, the standard and one’s
own compiler remain the final authorities on the language.

cHAPTER 1: A Tutorial Introduction

Let us begin with a quick introduction to C. Our aim is to show the essen-
tial elements of the language in real programs, but without getting bogged down
in details, rules, and exceptions. At this point, we are not trying to be complete
or even precise (save that the examples are meant to be correct). We want to
get you as quickly as possible to the point where you can write useful programs,
and to do that we have to concentrate on the basics: variables and constants,
arithmetic, control flow, functions, and the rudiments of input and output. We
are intentionally leaving out of this chapter features of C that are important for
writing bigger programs. These include pointers, structures, most of C’s rich set
of operators, several control-flow statements, and the standard library.

This approach has its drawbacks. Most notable is that the complete story on
any particular language feature is not found here, and the tutorial, by being
brief, may also be misleading. And because the examples do not use the full
power of C, they are not as concise and elegant as they might be. We have
tried to minimize these effects, but be warned. Another drawback is that later
chapters will necessarily repeat some of this chapter. We hope that the repeti-
tion will help you more than it annoys.

In any case, experienced programmers should be able to extrapolate from the
material in this chapter to their own programming needs. Beginners should sup-
plement it by writing small, similar programs of their own. Both groups can use
it as a framework on which to hang the more detailed descriptions that begin in

Chapter 2.

1.1 Getting Started

The only way to learn a new programming language is by writing programs
in it. The first program to write is the same for all languages:

Print the words
hello, worlad

This is the big hurdle; to leap over it you have to be able to create the program

