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Preface

Multivariable and optimal systems are now an established part of systems science
and control engineering degree courses. This text aims to provide a course and
self study textbook for undergraduate and Master’s degree control engineering
students in universities and polytechnics covering the conceptual basis of multi-
variable systems control theory and optimal control and illustrating its appli-
cation to simple multivariable process plant. It is motivated by the observation
that available texts either lie at the research level demanding a degree of mathe-
matical sophistication that few undergraduates can cope with, or are fairly
general control texts containing some information on multivariable and optimal
systems but, due to lack of space, tending to make the treatment rather super-
ficial. The proposed text attempts to bring depth whilst using, in its simplest
form, mathematics normally included in undergraduate engineering courses.
In this way the reader can obtain a (relatively) painless and firm basis for future
specialist studies.

In my experience, the major obstacles met by the typical student are the
steps from classical control design methods to “thinking multivariable-style”
and from there to expressing multivariable concepts in matrix form. The ap-
proach taken, therefore, is to introduce concepts in the context of dynamics
studies of simple process plant to illustrate the natural source of the techniques.
I have also found that engineering students, in general, respond best if the
engineering design applications aspects of the material are emphasized rather
than the general systems theoretical topics. Thus the text takes the view that
design principles and design practice are the most important part of the armoury
of the future control engineer in the sense that design decisions are made by
human judgement based on experience of synthesis procedures seen to work
in elementary cases.

An important comment is that, despite the elementary style of the text,
the standard of mathematical rigour is, on the whole, high and based on the
maxim, “He who does not know the limitations of the theory is lost” (anon.).
In this sense the reader is presented with a rigorous development of most of the
essential results forming the cornerstones of applications studies and techniques



vi Multivariable and Optimal Systems

described in more advanced texts. The validity and potential of the concepts are
also illustrated by simple but meaningful physical examples. The subtleties of
more advanced computer-aided design and synthesis procedures are, however,
left for further study in more advanced texts.

The text is divided naturally into three parts. Chapters 1 and 2 provide a
sound introduction to the basic ideas of modelling systems behaviour by con-
tinuous or discrete state variable models and the effect of a general form of
state feedback. Chapters 3 and 4 lay a firm foundation for control studies using
Laplace transforms, poles, zeros and design criteria of systems with more than
one output. A number of essentially multivariable design concepts are illustrated
by a detailed consideration of multivariable generalizations of a first order lag.
Finally, Chapters 5 to 7 return to the time-domain and, formulate and solve a
number of continuous and discrete optimal control problems. Emphasis is
placed on the linear quadratic optimal control problem and minimum energy
and minimum fuel problems to illustrate principles. A statement of the Euler-
Lagrange equations and the Minimum Principle of Pontryagin are also included
for completeness.

This text is the product of several courses given by the author at the Uni-
versity of Sheffield since 1973 and the comments and questions of the under-
graduates and postgraduates who attended them. Many thanks go to Mrs P.
Turner and Mrs J. Stubbs for typing the draft manuscript and to my wife and
family for enduring its preparation.

D.H. Owens
August 1981
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1. Systems and
Dynamics

This chapter introduces the fundamental language of systems models,
systems dynamics, systems structure and simulation used in the multi-
variable and optimal control studies described in the remaining chapters.
The material is frequently initiated by illustrating how it naturally arises in
practice and its distinctive differences from, and similarities to, classical
ordinary differential equation methods are highlighted to emphasize
fundamentally new concepts and to reassure the timid reader that he is not
too far from familiar territory.

1.1 Introduction and Review of Basic Concepts

The schematic diagram shown in Fig. 1 is the familiar block diagram represen-
tation of a classical dynamic system with manipulable input u driving the system
from given initial conditions to produce the consequent measured output y.
Either or both could be continuously varying with time or be represented by
discrete/sampled values at defined points of time. For simplicity at this stage
we will assume that all signals are continuous. The only significant exclusions
from this general picture are the possibilities of other measurable or stochastic
(i.e. noise) inputs to the process from the environment.

The mathematical building blocks used to express, analyse and predict the
relationships between input, output and initial conditions are surprisingly few
in number. The most fundamental branch of knowledge is the theory of nth

Initial | conditions

Input Output
— > System |———>
v y

Fig. 1. Deterministic representation of system dynamics.

1
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order ordinary differential equations. More precisely the most commonly used
method of expressing the relationship between the input and output uses an nth
order ordinary differential equation of the general (nonlinear) form

"y @) _ dy(t) 1) d"u(?)
. i N -] | 1.1
= »@), S B v ] LT
with initial conditions of the form
dy d" 'y
y(0) = do,dt = dl,...,——dt,,-l . =dpy 12)

These models are normally obtained either by “analytical modelling” of the
system dynamics directly from the fundamental and empirical laws governing
the process or by “indirect” model-fitting techniques based on available plant
transient or frequency response data.

In the case of equation (1.1) being linear of the form (after a little reorganiz-
ation)

d?y d" 1y dy d"u
ﬂoﬁ+a1dtr:——1+"-+an—1a+any = by arm
dn1y u
+b1d—tn:+...+bn_1d—t‘+bnu, (a0 #* 0) (1.3)

the mathematical machinery of analysis is extremely highly developed. In
particular the use of Laplace transform techniques has long been established
as a powerful tool. Perhaps the most significant idea is that of the system
transfer function. Introducing the differential operator D = d/d¢ and the poly-
nomials

PQ\) = ao\* +a, NP+ 4a,_Ata, (1.4)
QM) = boN* +b,\" " '+ ... +b,_A+b, (1.5)
then the system of equation (1.3) has the compact form

PD)y(@) = QD)u(?) (1.6)

The system transfer function is the rational function of the complex variable s
defined by

()
P(s)
and the system is frequently represented by the block diagram of Fig. 2. A

fundamental property of the system transfer function is obtained for the case of
zero initial conditions, d,, ., =0, 1 <k <n, and the case of inputs possessing

g(s) = 1.7
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ul(s) y(s)

9(s) P————

Fig. 2. Transfer function representation of system dynamics.
the property that D* "'y (£)|;-¢ = 0, 1 <k < n, namely
y(s) = g()uls) (1.8)

where, for notational simplicity, the Laplace transform of u(¢) and y(¢) are
denoted u(s) and y(s) respectively. If % and #~! denote the operations of
taking the Laplace transform and taking inverse Laplace transforms respectively,
then (1.8) takes the form

O =2 g@uE] = [ A= 1Hu)dr (19)

where h(f) = Z ! [g(s)] is the system impulse response and the final integral is
termed the convolution of h and u.

The power of the transfer function representation of system dynamics
originates in the simplicity of representation of the dynamics of composite
systems. Consider the parallel, series and feedback configurations illustrated in-
Fig. 3., the reader will easily verify that the transfer functions in each case are

(a) g(s) = g1() +g2() + ...+ g (s)
(b) g(s) = £1()82(5) - - -&m ()
©) g(s) = - 1) - (1.10)

1 +g1(s)g2(s)

The major impact of transfer function methods are felt, however, in the design
of the forward path and minor loop elements in the general scalar feedback
system illustrated in Fig. 4., by the use of the frequency response g(jw) (j* =
— 1) and the Nyquist stability criterion. Alternatively, the factorization

go(s—2z1)(5—23)...(s—z,) ng "
50 = T =& Il G6—z)/T16—p) (111
E—p)E—p2)...(s—pn) °1=1( 1) l=1( pr) (1.11)
and consideration of the poles {p1, pa, . .., pn}, zeros {z,2,, . . ., 2, }, order

n, rank n —n, and gain g, of the transfer function (a) provide valuable infor-
mation on open-loop stability and transient performance and (b) can be used as
the basis for the choice of control elements using the well known root-locus
method.

The following chapters can be regarded as a self-contained introduction to the
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91(5)

g,(s)

9, (s)
y(s)
LA Py 9,(s) L>lg(s) |~ o
uls) 4+ y(s)
> g9,(s) >
g5(s) |

Fig. 3. Parallel, series and feedback configurations.

methodology required for the extension of the above ideas to cover the model-
ling, analysis and design of control systems for engineering systems with more
than one input and more than one output. Such systems are commonly called
multi-input/multi-output or MULTIVARIABLE systems and are represented
schematically as shown in Fig. 5. They reduce to the single-input/single-output
case wherever m =1/= 1. An important general property of such systems (and a
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Demand Plont
+ + u(s) (s)
LI K(s) 9(s) 4
Forward path
controller
h(s)
Minor loop
element
f(s)
Measurement
dynamics

Fig. 4. Feedback system with minor loop and transducer dynamics.

major source of design difficulties) is INTERACTION between inputs and
outputs in the sense that any input u;, (say) will have a dynamic effect on all
outputs y;, 1 <i<m. In the case of m =1>1 (i.e. we have equal numbers of
inputs and outputs) and each input u;, only has a dynamic effect ony,, 1 <k <
m, the system is said to be NON-INTERACTING. Examples of interacting and
non-interacting two-input/two-output systems are illustrated in Figs 6 and 7
respectively. The source of the interaction is easily identified by noting that
Fig. 6 reduces to Fig. 7 in the case of a == 0. Note that non-interacting
systems can be regarded as a collection of distinct single-input/single-output
systems, each of which can be controlled independently of the others.

The success of the classical ideas of feedback and transfer functions in the
analysis and design of single-input/single-output systems is a major motivation
for the attempt to generalize them to cover the case of multi-input/multi-output

Initiullconditions
u, <
_+ . - _—q
Uy Multi - input / A
—_— e

multi - output

Y, system ¥

Fig. 5. Deterministic representation of a multi-input/multi-output system.
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yy(s) + 1 #(s)
s+1 a
y
Causes
a B
T3 —~ of —_— . i
¢ interaction s+2
yi(s) ’ uy(s)
s+3 +

Fig. 6. An interacting multi-input/ multi-output system,

systems. Such an attempt must formulate and provide precise answers to
questions such as

(i) What form of mathematical model is most suitable for multi-input/multi-
output studies?

(ii) What is the generalization of the notion of transfer function?

(iif) What do we mean by the ideas of poles, zeros and frequency response?

(iv) What is feedback in this general case?

(v) What is the generalization of the notion of stability?

(vi) Are there useful generalizations of the ideas of Nyquist diagrams and root-
loci?

Of course the answers to these questions will apply to single-input/single-
output systems also.

In many cases the required generalizations take their most natural form when
expressed in the language of matrix theory. This formal simplicity is simul-
taneously of great value in removing mathematical clutter and revealing the basic
structure of the problem and in the conversion of design relationships into a
form suitable for evaluation by a digital computer. The reader should beware,

”1(5) 1 /1(5)
T s+1
Uy(s) 1 Yy (s)

s+3

Fig. 7. A non-interacting multi—input/multi—output system.
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however, of its tendency to mask the difficulties inherent in multi-input/multi-
output control problems. In other cases, such as the development of optimal
controllers and a consideration of the integrity of the design, the development
has no counterpart in classical theory.

A final word on the use of matrix theory: there is no doubt that it is
a powerful tool for analysis and a natural setting for converting design
relations into a form suitable for digital computer calculations. It can even
be agreed that matrix methods are a major contributor to the rapid rate
of advance of control science over the last two decades. The methods do,
however, take a little getting used to and, for this reason, the text restricts
its attention to design methods that can be formulated using only simple
matrix operations, such as addition, multiplication by scalars, inversion
and calculation of eigenvalues and eigenvectors. Subroutines performing
such operations are commonly available as library software on digital com-
puters.

1.2 State Variable Models of Process Dynamics

Although the scalar nth order differential equations of (1.3) and (1.6) have been
used frequently in classical design studies, it is true that modelling of process
dynamics directly from known physical laws rarely produces such equations.
In contrast, the system model frequently takes the form of a set of ordinary
differential equations, each obtained from modelling individual system compo-

u1(f) uz(f)
Ll ——

~

xp(1)

B
ld,(r) dy (1) ll ‘

Fig. 8. Two-input liquid level system.
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nents and their interconnections. Only in the case of single-input/single-output
(m=1=1) systems where all such equations are linear with constant coef-
ficients can these equations be reduced to a single ordinary differential equation.
In many cases, this can require considerable computational effort. For these, and
other reasons, the mathematical models used in the study of the dynamics and
control of multi-input/multi-output systems take a general form that bears little
formal similarity to (1.3) and (1.6). The following examples will be used to
motivate the general form to be used.

EXAMPLE 1.2.1 (nonlinear model of a two-vessel liquid level system). Consider
the elementary dynamic system illustrated in Fig. 8 consisting of two
interconnected vessels of uniform cross-section and areas a, , 2, respect-
ively. Let x;(), i=1,2, denote the height of liquid in vessel 7, u;(7),
i=1,2, denote the input flow rate into vessel i (m>/s), and let d;(¢),
i= 1,2, denote known disturbance outlet flow rates (m3/s) from the
bottom of the vessels. The intervessel flow (m?3/s) is assumed to be a
function only of the pressure drop between A and B and is hence taken
as a function f, (x; (¢) — x; (#)) of the height difference x; (£) — x, (¢).

Elementary considerations of the mass balance in each vessel yields
the following (nonlinear) differential equations describing the dynamics
of the process:

L d_xc#) = u1 () —fo(x1(t) —x2()) — d, (D)
dx;ft) = Uy (t) + fo(x1(2) —x,(9)) —dy () (1.12)

The system initial conditions can be taken as the known values of x1(2)
and x,(f) at a given time ¢ =+¢,. Note that each equation cannot be
solved independently of the other, i.e. the vessels dynamics are coupled
by the intervessel flow.

The model will be complete when the system ouputs are defined.
There are a number of possibilities here. For example, if separate
measurements of the levels x,(f) and x, (¢) are available, the outputs
could be defined as

@) = x,@), Y2() = x,(2) (1.13)

Alternatively, the outputs could be taken to be the total volume of
liquids in both vessels and the difference in head,

y1(8) = ayx,(t) + axx, (t), Y2(®) = x1(0) —x,(2) (1.14)
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EXERCISE 1.2.1. In the case of @; =a, =a with outputs defined by (1.14)
show that the model (1.12) reduces to the equations

dydlt(’) = (u1 () + u, @) — (d1(?) + d, (1))
(1.15)
dy;t(t) = a ' ()~ u:(0) — 287 f(32(D)) —a ' (d, () — d, (£))

Note that each equation can be solved independently of the other if the initial
conditions and inputs are known. (This is not the case for the outputs defined
by (1.13).) Note also that, if we used the input variables 4, = u, + u, and
Uy =u; — Uy, equation (1.15) indicates that the resulting system is non-
interacting.

EXAMPLE 1.2.2 (model of a double spring-mass system). Consider the mechan-
ical system of Fig. 9 consisting of two masses m,, m, connected by
lossless springs with linear displacement/force characteristics. The
system has one input u,(¢) equal to the vertical displacement of the
supporting platform from an equilibrium position. Applying the normal
laws of motion, the following linear equations are obtained

dle(t)

i ki(ui () —x1(2) — k2 (31 () — %2 (2))
, 2 - -1 ) (116)

ie. two coupled second order ordinary differential equations. An
equivalent set of four first order ordinary differential equations are
obtained by defining auxiliary variables x;3(z)=dx,(t)/d¢ and
x4(2) = dx,(2)/dt,

dx, () _

%0
20— i)
% = % (ul(t)—xl(t))—:;—21 (x1 () = x2())
) ”;—Z (x1(0) =%, () (L.17)



