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PREFACE _
THIS book has been designed with two objects in view. The first is the
development of applications of the fundamental processes of the theory of
functions of complex variables. For this purpose Bessel functions are admirably
adapted; while they offer at the same time a rather wider scope for the appli-

cation of parts of the theory of functions of a real variable than is provided ’by(1

triéonometrical functions in the theory of Fourier series.

The second object is the compilation of a collection of results which would
be of value to.the increasing number of Mathematicians and Physicists who
encounter Bessel functions in the course of their researches. The existence of
such a collection seems to be demanded by the greater abstruseness of properties

of Bessel functions (especially of functions of large order) which have been. -

required in recent years in various problems of Mathematical Physics.

While my endeavour has been to gi've an account of the theory of Bessel
functions which a Pure Mathematician would regard as fairly complete, I have
consequently also endeavoured to include all formulae, whether general or

special, which, although without theoretical interest, are likely to be required

in practical applications; and such results are given, so far as possible, in a
form appropriate for these purposes. The breadth of these aims, combined

with the necessity for keeping the size of the book within bounds, has made

it necessary to be as concise as is compatible with intelligibility.

Since the book is, for the most part, a development of the theory oi fanc-
tions as expounded in the Course of Modern Analysis by Professor Whittaker
and myself, it has been convenient to regard that treatise as a standard work
of reference for general theorems, rather than to refer the reader to original
sources. P )3

It is desirable to draw attention here to the function which I have regarded
as the canonical function of the second kind, namely the function which was
defined by Weber and used subsequently by Schlifli, by Graf and Gubler and
by Nielsen. For historical and sentimental reasons it would-have been pleasing
to have felt justified in using Hankel’s fanction of the second kind; but threc

. considerations prevented this. The first is the necessity for standardizing the”
- function of the second kind; and, in my opinion, the authority of the group

of mathematicians who use Weber’s function has greater weight than the
authority of the mathematicians who use any other one function of the second
kind. The second is the parallelism which the use of Weber’s function exhibits
between the two kinds of Bessel funetions and the two kinds (cosine and sine)
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of bngonometncal functions. The third is the exlsbence of the device by which
interpolation is made possible in Tables I and III at the end of Chapter XX,
which seems to make the use of Weber’s functlon inevitable in numerical work.

It has been my policy to give, in connexion with each section, references
to any memoirs or treatises ifi which the results of the section have been
previously enunciated; but it is not to be inferred that proofs given in this
book are necessarily those given in any of the sources cited... The bibliography
at the end of the book has been made as complete as possible, though doubtless
omissions will be found in it. While I do not profess to have inserted every
¢ memoir in which Bessel functions are mentioned, I.have not consciously omitted
any memoir containing an original contribution, however slight, to the theory
of the functions; with regard to the related- topic of Riccati’s equation, I have
been eclectic to the extent of inserting only those memoirs whlch seemed to
be-relevant to the general scheme.

In the case of an analytical treatise sucb as this, it is probably useless to -
hope that no mistakes, clerical or other, have remained undetected; but the
number of such mistakes has been considerably diminished by the criticisms
and the vigilance of my colleagues Mr C. T. Preece ‘and Mr T. A. Lumsden,
whose labours to remove errors and obscurities have been of the greatest
value. To these gentlemen and to the staff of the University Press, who have
given every assistance, with unfailing patience, in a work of great typographieal
complexlt.y I 'offer my gr&t.eful thanks, .

G. N. W.

Auguat 21, 1923. -

PRE'FLACE TO THE SECOND EDITION

To moorporate in this work the discoveries of the last twenty years would
necessitate the rewriting of at hapters XII—XIX; my interest in -
Besscl functions, however, has waned since 1922, and I am consequently not
_prepared ‘to undertake such & task to the detriment of my other activities.
In the prepa.mtxon of tlils new edition I have therefore limited myself to the
correction of minor errors and misprints and to the emendation of a fow
agsertions (such as those about the unproven character, of Bourget’s hypo-
thesis) which, though they may have been true in 1922 would have been
deﬁmtely false had they been made in 1941.

My thanks are due to many friends {:r their kindness in informing me of
‘errors which ‘they had noticed; in particular, I cannot miss this opportunity
" of expressing my gratitude to Professor J. R. Wilton for the vigilance which
he must have exercised in the compilation of his llsf, of corrigenda.

March 31, 1941 ' G.N. W,



To stand upon every point, and go over things at large, and to be curious in
particulars, belongeth to the first author of the story : but to use brevity,
and avoid much labeuring of the work, is to be granted to him that will

make an abndgemeut
2 MAccABEES ii. 30, 31.
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CHAPTER 1

BESSEL FUNCTIONS BEFORE 1826

-1°1. Riccati's differential equation. -
The theory of Bessel functions is intimately connected with the theory of
- a certain type of differential equa.tlon of the first order, known as Riccati’s
. equation. In fact a Bessel function is usually defined as a particular solution
" ofa linear differential equation of the second order (known as Bessel's equation)
. which is derived from Riccati’s equation by an elementary transformation.
~ The earliest appearance in Analysis of an equation of Riccati's type occurs
in a paper® on curves which was published by John Bernoulli in 1694. In
~=this paper Bernoulli gives, as an example, an equation of this type and states
that he has not solved it ¥.

In various letters! to Leibniz, written between 1697 and 1704 James
~Bernoulli refers to the equatlon, which he gives in the form

dy= yyde + awda,

. and states, more than once, his inability to selve it. Thus he writes (Jan. 27,
1697): “ Vellem porro ex Te scire num et hanc tentaveris dy = yydez + szdz.
Ego in mille formas transmutavi, sed operam meam improbum Problema per-
petuo lusit.” Five years later he sugceeded in reducing the equation to a linear
equation of the second order and wrote§ to Leibniz (Nov. 15, 1702): “Qua
occasione recordor aequationes alias memoratae dy = yydz + 2*dz in qua nun-
quam separare potui indeterminatas a se invicem, sicut s&equatio maneret
simpliciter differentialis: sed: separavi illas reducendo aequatmnem ad hanc
differentio-differentialem|| ddy : y = - a*dz”

When this dlscovery had been made, it was a simple step to solve the last
equation in series, and so to obtain the soluv.on of the equation of the first
order as the quotient of two power-series.

* Acta Eruditorum publicata Lipsiae, 1694, pp. 435—487.

+ *“Esto proposita aequatio differentislis haec 2%dz +y3dzr=a%dy quae an per separationem
indeterminatarum construi possit nondum tentavi” (p. 436).

1 See Leibnizens gesamellte Werke, Dritte Folge (Mathematik), nr. (Hs.lle, 1855), pp. 50—817.

§ Ibid. p. 85. Bernoulli’s procedure was, efectively, to take a new varisble u defined by the

formula
1 du
: Tudzr "
in the equation dyfdz=2*+y? and theu to replace « by y.
- il The connexion between this equation and a special form of Besgel's equation will be seen
in §4-3.

W.B. P, 1
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And, in fact, this form of the solution was communicated to Leibniz by
James Bernoulli within a year (Oct. 3, 1703) in the following terms®:

“Reduco autem aequationem dy= yydz+awds ad fractionem cujus uterque
terminus per seriem exprimitur, ita

s & an . o 49
378.4.773.4.7.8.11 3.4.7.8.11.12.16 7 3.4.7.8.11.19,15.16.19 %

A N ol Pl
“32 Y3753 T sEagsine Y saqE e 518 o

quae series quldem actuali divisione in unam.conflari possunt, sed in qua
ratio progresmoms non‘tam facile patescat, scil.
a 221 ‘ 1825
O RE K RAT W R AR R KRR et

Of course, at that time, mathematicians concentrated their energy, so far
as differential equations were concernied, on obtaining solutions ¢n finite terms,
and consequently James Bernoulli seems to have received hardly the full credit
to which his discovery entitled him. Thus, twenty-two years later, the papert,
in which Count Riccati first referred to an equation of the type which now
bears his name, was followed by a note} by Daniel ‘Bernoulli in which it was
stated that f.he solution of the equation§

az® dx + vude =bdu

was a hitherto unsolved problem. The note ended with an announcement in
an anagram of the solution : “ Solutio problematxs ab Ill. Riccato proposito

* characteribus occultis involuta 24a, 6b, 6¢, 8d, 83¢, 5/, 29, 4h, 33i, 6/, 21m,

26n, 160, 8p, 59, 17r, 16s, 25, 324, bz, 3y, +, —, —, +,=, 4, 2, L.”

Thé anagram appears never to have been solved ; but Bernoulli pubhshedr
his solution|| of the problem about a year after the publication of the anagram.:
The solution consists of the determination of a set of values of n, namely
— 4m/(2m + 1), where m is any integer, for any one of which the equation is
soluble in finite terms; the details of this solution will be given in §§4-1, 4°11.-

The prominence given to the work of Riceati by Daniel Bernoulli, combined -
with the fact that Riccati’s equation was of a slightly more general type than

* See Leibnizens gesamelite Werke, Dritte Folge (Mathematik), 1. (Hdle, 1855), p. 75.
¥ Acta Eruditorum, Suppl. viu. (1724), pp. 66—78, The form in which Ricoati took ‘the
equation was )
a™dg=du+uudz: g,
where g =2z®.
% Ibid. pp. 78—175. Daniel Bernoulli mentioned that solutions had been obtained by three
other members of his family—John, Nicholas and the younger Nicholas.
§ The reader should observe that the substitution -
: .
s dx
glvu rise to an equation which ie easily soluble in series. )
|| Ezercitationes qmdam mathematicae (Venioe, 1724), pp. 77—S80; dcta Eruditorum, 1755.
pp. 466—478. '
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-John Bernoulli’s equation ® has resulted in the name of Riceati being assoclated :
not only with the equation which he discussed without solving, but also w1t.h
a still more general type of equation. -

It is now customary to give the name{ Riccati’s generalised equation to
_any equation of the form

% —P+Qy+Ry,

where P, Q, R are given functions of z.

It is supposed that neither P nor R is .identics.lly zero. If R=0, the equation is linear;
if P=0, the equation is reducible to the linear form by taking 1/y a€ a new variable. - .
- The last equation was studied by Euler}; it is reducible to the general
. linear equation of the second order, and this equation is sometimes reducible
to Bessel’s equation by an elementary transformation (cf. § 81, 43, 431).

Mention should be made here of two memoirs by Euler. Inu the first§ it
is proved that, when a particular integral y, of Riccati’s generalised equation
is known, the equation is reducible to & linear equation of the first order by
replacing y by y, + 1/u, and so the general solution can be effected by two
quadratures. It is also shewn (3bid. p. 59) that, if two particular solutions are
known, the equation can be inbegrabed completely by a single quadrature; and
this result is also to be found in the second|| of the two papers. A brief dis-
cussion of these theorems will be given in Chaoter 1v.

1-2. Daniel Bernoulli's mechanical problem.

In 1738 Daniel Bernoulli published a memoir¥ containing enunciations of
a number of theorems on the oscillations of heavy chains. The eighth ** of
these is as follows: “ De figura cutenae uniformiter oscillantis. Sit catena AC
* uniformiter gravis et perfecte flexilis suspensa de puncto 4, eaque oscillationes
facere uniformes intelligatur: pervenerit catena in situm AMF; fueritque -
longitudo catenae=1: longitudo cujuscunque partis #'M = , sumatur n ejus
valoris ++ ut fit '
1 l 4 i i + b s
dnn 4.97° " 4.9.16n* 4.9.16.25%°
* See James Bernoulli, Opera Omnia, 11. (Geneva, 1744), pp. 1054—1057; it is stated that the ‘
point of Riccati’s problem is the determination of a solation in finite terms, and a solution which
resembles the solution by Daniel Bernoulli is given.
+ The term * Riceati’s equation ' was used by D’Alembert, Hist. de I Acad. R. des Sci, de Berlin,
x1x. (1768), {published 1770], p. 242. .
% Institutiones Calculi Inteyralis, 1. (Petersburg, 1769), § 881, pp. 88—89. ' Ia connexion wu'.h
the rodncuon see James Bernoulli’s letter to Leibniz slready quoted.
§ Novi'‘Comm. Acad. Petrop. viui. (1760—1761), [published 1763], p. 32.
| Ibid. 1x. (1763—1768), [published 1764], pp. 163—164.
9 *“ Theoremata de oscillationibus corporum filo flexili connexornm et cstense verticalifer
suspensae,” Comm. Acad. Sci. Imp. Petrop. vi. (1783—38), [published 1738], pp. 108—122.

** Loe. cit. p. 116.
1+ The length of the simple equivalent pendulum is n.

+ ete. = 0.

1--2



4 THEORY OF BESSEL FUNCTIONS [CHAP. 1

Ponatur porro distantia extremi puncti F ab linea - verticali = 1, dico fore
distantiam puncti ubicunque assumpti M ab eadem linea verticalki aequalem
ax o z o

I-C4 - .90 T4 9 160 4.9.16. %0

He goes on to say: “Invenitur brevissimo caleulo » = proxime 0 691 1...
Habet autem littera » infinitos valores alios.”

The last series is now described as a Bessel function® of order zero and
argument 24/(z/n); and the last quotation states that this function has an
infinite number of zeros.

Bernoulli publishedt proofs of his theorems.soon afterwards; in theorem
vi1i, he obtained the equation of motion by considering the forces acting on
the portion FM of length 2. The equation of motion was also obtained by
~Euler{ many years later from a consideration of the forces acting on an element
_of the chain.

+ etc'"

The following is the substance of Euler's investigation :

Let p be the line density of the chain (supposed uniform) and let 7' be the tension at
height x above the lowest point of the chain in its undisturbed position. The mation being
transversal, we obtain the equation 37'=gp3z by resolving vertically for an element of
chain of length 3x. The integral of the equation is T'=gpz.

The horizontal component of the tension is, effectiv ely, 7' (dy/dx) where. y is the (hori-
zontal) displacement of the element ; and so the equation of motion is

d
p 012 d—‘* =§ (T d—.:) .
If we substitute for 7’ and proceed to the limit, we find that
. @y
. a9 dz (
If f is the length of the simple equivalent pendulum for any one normal vibration, we

write
y=40 (;.) sin ((+: \/f,) ,
where A and { are constants ; and then IT (.r/f ) is a solution of the equation
£(+5) 5

If x/f=u, we obtain the solution in the form of Bernoulli's series, namely
" l.-— . u? o e uf _ ¢
TTT1TT AT 07,1016

* On the Continent, the functions are ucually called cylinder functions, or, oecasionally, func-
tions of Fourier-Bessel, after Heine, Journal fiir Math. Lxix. (1868), p. 128; see also Math. dan.

1. (1871), pp. 609—610.

+ Comm. Acad. Petrop, vi1, (1734—35), [published 1740], pp. 162—179.

' T deta Acad. Petrop. v. pars 1 (Mathematica), (1781), [published 1784), pp. 167—177. Euler
took the weight of length ¢ of the chain to be E, and he detined g to be the measure of the
distanoe (not twice the distance) fallen by a particle from rest under gravity in a second. Euler's
notation has been followed in the text apart from the significance of g and the introduction of
p and § (for d).
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- The general solution of the equation is then shewn to be Dv + Cv / gy , Where € and

D are constants. Since y is finite when £=0, ¢ must be zero,
If a is the whole length of the chain, y-o when x =g, and so the equation te determine f is
P
w 'i.—Zfi “Taopt=0
By an extremely ingenious analysis, which will be 'given fully in Chapter xv, Euler
proceeded to shew that the three smallest roots of the equation in a/f are 1'445795, 7°6658
and 1863. [More accurate values are 14457965, 7-6178156 and 18:7217517.] .
In the memoir¥ immediately following this investigation Euler. obtained the general

[

solution (in the form of series) of the equation - ( . g%) +9=0, but his statement of the

law of formation of suecessive coefficients is rather incomplete. The law of formation kad,
however, been stated in his Institutiones Calculi Integralist, 11. (Petersburg, 1769), § 977,
pp. 233-236.
13. FEuler's mechanical problem. ¢
The vibrations of a stretched membrane were investigated by Euler} in
1764. He arrived at the equation
1d*z2 diz 1dz  1d*z
fdedr Trdr T Rdg
where z is the transverse displacement‘at time ¢ at the point whose polar
coordinates are (r, ¢); and e is a constant dependmg on the densitv and
tension of the membrane.
To obtain a normal solution he wrote
z=wusin (af + 4)sin (B¢ + B),
where a, A, B, B are constants and u is a function of r; and the result of
substitution of this value of z is the differential equation
d*u  ldu (o
gl f:) 0.
The solution of this equation which is finite at the origin is given on p. 256
of Euler’s memoir; it is
e ot }

eyt {1 Tem+eE 2 adm+r D+ )
where n has been written§ in place of 28 + 1.
This differential equation is now known as Bessel’s equation for functions
of order 8; and 8 may have || any of the values 0, 1, 2, .... -

Save for an omitted constant factor the series is now called a Bessel
coefficient of order 8 and argument ar/e. The periods of vibration, 2u/a, of a

* Acta Acad. Petrop. v. pars 1 (Mathematica), (1781), [published 1784], pp. 178—190.

t See also §§985, 936 (p. 187 et seq.) for the solution of an assqciated equation which will be
discussed in § 3-52.

1 Novi Comm. Acad. Petrop. x. (1764), [published 1766], pp. 243—260.

§ The reason why Euler made this chauge of notation is hot obvious.

Il If 8 were not an integer, the displacement would not be a one-valued funetion of position,
in view of the factor sin (8¢ + Bj.
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circular memb_rane of radius & with a fixed boundary*® are to be determined
from the consideration that u vanishes when r = a. '

This investigation by Euler contains the earliest appearance in Analysus of
a Bessel coefficient of general integral order.

14 The researches of Lagrange, Carlins and Laplace.

Only a few years after Euler had arrived at the general Bessel coefficient
in his researches on vibrating membranes, the functions reappeared, in an .
.astronomical problem. It wasshewn by Lagranget in 1770 that, in the elliptic
motion of a planet about the sun at the focus attracting according to the law
of the inverse square, the relations between the radius vector r, the mean
snomaly M and the eccentric anomaly E, which assume the forms

s M=FE-—c¢sinE, r=a(l—ecosk),
give rise to the expahsions '
E=H+ A,sinnM, '—=1+§e’+EBeosnM
n=l - n=l
in which a and e are the semi-major axis and the eccentricity of the orbit, and
_)m pRtam—1 e"‘r’”‘ 2 (=)™ (n+ gms‘ pHamn— gnm
meo 20T mi (0 + m)! i ,,.-o 20+ g (n + m)!

A-2

Lagrange gave these expressions for n=1,2,3. The. ‘object of the expamnons
is to obtain expressions for the eccentric anomaly and the radius vector in
terms of the time. ‘

In modern nota.hon these formulae are written

. o= 2J, (ne)fn, B,=-2 (a/n)J (ne).

It was noted by Poxsson, Connaissance des Tems, 1836 [pubhshed 1833}, p. 6 that
Bo=_* dA,.

ns T n df ]

a memoir by Lefort, Journal de Matk, X1, (1848), pp. 142152, in whxch an error made by
Poisson is ocrrected, should also be consulted.

.A remarkable investigation of the approximate value of 4, whenn is large
and 0 < e< 1 is due to Carlini}; though the analysis is not rigorous (and- it
would be difficult to make it rigorous) it is of sufficient interest for a brief
account of it to be given here. ‘

* Of. Bonrget, 4. Sci. de UEcole norm. sup, m. (1866), pp. 35—95, ‘and/ Chree, Quarterly
Journal. xx1. (1886), p. 298,

+ Hist. de VAcad. R. des Sci. de Berlm, XXV, (1769), [published 1771}, pr. 204—283. [Oeuvres,
w1 (1869), pp. 118—188.]

" % Ricerche sulla comvergenzu della serie che serva alla noluuou del -problema di Keplerc
(Milan, 1817). This work was translated into German by Jacobi, 4sir. Nach. xxx. (1850},
* col. 197—254 [Werke, vii. (1891), pp. 189—245). See also two papers by Scheibner dated 1856,
reprinted in Math, Ann, xviz, (1880), pp. 581—544, 545—560,
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1t is easy to shew that A, isa solution of the differential equation
' a4,  dd
e d‘," +e a—‘"—n’ (1-62) 4,=0. »

Define u by the formula 4,=2n"~1 ¢ “d'/n! and then

¢ (%fu“)-?—m—n’(l_— €?)=0.

Hence when = is large either u or u? or du/de must be large.

If u=0 (n*) we should expect u? and dujde to be O(n*) and O (n®) respectively ;-and
on eogsidering the highest powers of # in the various terms of the last differential equation,
we find that a=1. It is consequently assumed that v admits of an expansion in descending -
powers of  in the form : '
% =n2o+ Uy +2zg/1z+ _—
where #g, w,, %3, ... are independent of %.

On substituting this series in the differential equation of the first order and equating to
7670 the coefficients of the various powars.of », we find that ) .

ul=(1 —e?)/e?, € (uy +2uguy) + =0, ...

\/(1 —c’)’ - de

—a and therefore

where gy =dug/de ; so that we= £

o [udtsn {log liJa:,)-_tJ(\_ —.9)11} ~3log(l—e)+...y

. and, sinos the value of 4, shews that [ude ~n log }e when ¢ is small, the upper sign must
be taken and nc constant of integration is to be added,

From Sﬁrling’s formula it now follows at once that

A~ e exp {n o/(1—e*)}
" VGm). a1 -t 14 Sa -
and this is the result obtained by Carlini. This method of approximetion has been carried
much further by Meissel (see § 8-11), while Cauchy* has also discussed approzimate
formulae for 4, in the case of comets moving in nearly parabolic orbits (see § 8:42), for
which Carlini’s approximation is obviously inadequate. '

“The investigation of which an’account has just been given is much more

> plausible than the arguments employed by Laplacet to establish the corre-

sponding approximation for'B,.

. The investigation given by Laplace is quite rigorous and the method which
he uses is of considerable importance when the value of B, is modified by

taking all the coefficients in the series to be positive—or, alternatively, by
supposing that e is & pure imaginary. But Laplace goes on to argue that an
approximation established in the case of purely imaginary variables may be
used ‘sans crainte’ in the case of real variables. Toanyone who is acquainted
with the modern theory of asymptotic series, the fallacious character of such
reasoning will be evident. '

* Comptes Rendus, xxxviut. (1884}, pp. 990—998.

’ ¢ Mécanique Céleste, supplément, t. v. [firat published 1827]. Oeuvres, v. (Paris, 1882),
Pp. 486489, '
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The earlier portion of Laplace’s investigation is based on the principle
that, in the case of a series of positive terms in which the terms steadily in-
crease up to a certain point and then steadily decrease, the order of magnitude
of the sum of the series may frequently be obtained from a oonmdera.blon of
the order of magnitude of the greatest term of the series.

For other and more recent applications of this principle, see Stokes, Proc. Camb. Phil.
Soc. VL. (1889), pp. 362—366 [Math. and Phys. Papers, v. (1905), pp. 221—225), and Hardy,
Proc, London Math. Soc. (3) 11. (1905), pp. 332—-339 ; Messenger, xxx1v. (1905), pp. 97—101.
A statement of the principle was given by Borel, Acta Mathematica, xx. (1897), pp. 393—
304. -

The following exposition of the principle applied to the example con51dered
by Laplace may not be without interest :

The series considered is
= B, ()=

z(n_tgm)nu-bh— entim
Pz TG

in which # is large and e has-a fixed positive value. The greatest term is that for which
m=pu, where u is the greatest integer such that

4 (ntp) (nt 2 - 2) < (m + 2) &,
and &0 p is approximately equal to
¥ {1 +) = 1 Fe/(1 469,

Now, if u,, denotes the general term in B,®), it is easy to verify by Stirling’s theorom

that, to a first approximation, lf:-‘lﬂ’-‘ev ¢?, where
log g= — 2 /(1 4 €¥)/(ned).

Hence B,Weouy {1429+ 294 +2¢°+ ...}

~2u, J{w/(1-q)},

' since * ¢ is nearlv equal to 1.
Now, by Stirling’s theorem,
) Y e-1exp (nV/(1+ )}
W T L+ (1 +edn
) ‘~ 2 J(1+6%) i e exp {n /(1 +€%)}
g 20 | ki i B

-The inference which Laplace drew from this result is that
B o (2«/(1 - e’))i e*exp {ny/(1 — &)}
. n’ {1+vA -y *
- This approximate formula happens to be valid when ¢ <1 (though the reason

for this restriction is not apparent, apart from the fact that it is obviously
necessary), but it is difficult to prove it without using the methods of contour

. The formula 1+9£q‘ ~./{rl(1-q)} may be inferred from general theorems on series ;

cf. Bromw:eh Theory of Igﬂuiu Serses, §51. 1t is aleo a consequence of Jacobi's transformation
tomnla in the theory of elliptic funetions,

%00 =(~iN"¥%0]-r);
sve Modern Analysis, g 21-51.
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integration (cf. § 8:31). Laplace seems to have been dubious as to the validity
of his inference because, immediately after his statement about real and
imaginary variables, he mentioned, by way of confirmation, that he had
another proof; but the latter proof does not appear to be extant.

1'5. The researches of Fourier.

In 1822 appea.red the classical treatise by Fourier®, La Théorie analytique
de la Chaleur; in this work Bessel functions of order zero occur in the dis-
cussion of the symmetrical motion of heat in a solid circular cylinder. It is
shewn by Fourier (§§ 118—120) that the tempeérature v, at time ¢, at distance
x from the axis of the cylinder, satisfies the equation

dv K (div 1ldv

%D (5 o)
where K, C, D denote respectively the Thermal Conductivity, Specific Heat
and Density of the material of the cylinder; and he obtained the solution

w, go_ oe )

FTH e T L6
where ¢ = mCD/K and m has to be so chosen that
b + K (dv/dz) =
at the boundary of the cylinder, where h is the Extemal Conductunty

Fourier proceeded to give a proof (§ 307—309) by Rolle’s theoremn that
the equation to determine the values of m hast an infinity of real roots and
no complex roots. His proof is slightly incomplete because he assuimes that
certain theorems whwh have been proved for polynomials are true of integral
farictions; the defect is not difficult to remedy, and a memoir by Hurwitz}
has the object of making Fourier’s demonstration quite rigorous.

* It should also be mentioned that Fourier discovered the continued fraction
formula (§ 318) for the quotient of a Bessel function of order zero and its
derivate ; generahsatmns of this formula will be discussed in §§.5:6, 9-65.
Another formula. given by Fourier, namely :

ot o a® f
1= ve.==] cos asma;da:
-tz e ree’ (asin 2)
had been proved some years earlier by Patséval§; it is a special case of what
~ are now known as Bessel's and Poisson’s integrals (§§ 22, 2'8).

* The greater part of Fourier’s researches was contained in a memoir deposited in the archives
of the French Institute on Sept. 28, 1811, and crowned on Jan. 6, 1812. This memoir is to be
found in the Mém. de UAcad. des Sci., wv. (1819), [published 1824}, pp. 185—555; v. (1830),
[published 1826, pp. 168—246.

+ This is a generalisation of Bernoulli's statement quoted in §1-2.

4 Math. dnn. xxxim. (1889), pp. 246—266.

8§ Mém. des savans Etrangers, 1. (1805), pp. 639—648. This paper also contsins the formal
staterent of the theorem on Fourier constants which is sometimes-called Parseval's theorem ;
another paper by this little known writer, Mém. des savans étrangers, 1. (1805), pp. 379-—898, con-
tains a general solution of Laplace’s equation in a form involviug arbitrary functions. .

P = g—Mt {1
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The expansion of an arbitrary function into a series of Bessel functions of
order zero was also examined by Fourier (§§ 314—320); he gave the formula
for the general coefficient in the expansion as a definite integral.

The validity of Fouriers expsnsion was examined much more recently by Hankel,
Hath. Ann. viL (1875), pp. 471—494; Schliifli, Math. dnn. x. (1876), pp. 137—142; Dinj,
Serie di Fourier, 1. (Pisa, 1880), pp. 246—269 ; Hobson, Proc. London Math. Soc. (2) viL.
(1909), pp. 359—388 ; and Young, Proc. London Math. Soc. (2) xvIm. (1920), pp. 163—200.
This expansion will be dealt with in Chapter xvit.

1:6. The researches of Poisson.

The unsymmetrical motions of heat in a solid sphere and also in a solid
cylinder were investigated by Poisson® in a lengthy memoir published in 1828.
In the problem of the sphere+, he obtained the equation
d*R n(n+1)
_ - g B=-p'R
where r denotes the distance from the centre, p 18 a constant, n is a positive
integer (zero included), and R is that factor of the temperature, in a normal
mode, which is 2 function of the radius vector. It was shewn by Poisson that
a solution of the equation is '

w . < . €
g f cos (7p o8 @) Sin™ ' wdw
[

‘and he discussed the cases n=0, 1, 2 in detail. It will appear subsequently
(§ 8:8) that the definite integral is (save for a factor) a Bessel function of
order n 4 §. , :

In the problem of the cylinder (s¢4d. p. 840 et seq.) the analogous integral is

~

A f " cos (k. cos w) sin™ wde,
, i

where n=0, 1,2, ... and A is the distance from the axis of the cylinder. The
integral is now known as Poisson’s integral (§2:3). :

In the case n=0, an importent approximate formula for the last integral
and its derivate was obtained by Poisson (ibid., pp. 350—852) when the variable
is large; the following is the substance of his investigation:

Let} Jo(l.-)-%_ f:cos(koos oydeo, Jy (k)= — i- ,[: €08 w 8in (£ 008 ) do.
- Then Jy (k) is a solution of the equation ‘
d (y k) 1
L L (1+&_,.)th=0.

- * Journal de VEcole R. Polytechnique, xi. (cabier 19), (1838), pp. 249408,
+ Ibid. p. 800 ¢t seq. The equation was also studied by Plans, Mem. della R. Accad. delle Seci.
di Torino, xxv. (1821), pp. 582—534, and has since been studied by numerous writers, some of
whom are mentioned in § 4'8. See also Poiseon, La Théorie Mathématique de la Chaleur (Paris,
1885), pp. 366, 869, :
% Bee also Réhrs, Proc. London Math. Soc. v. (1874), pp. 186—137. The notation J, (k) was
not used by Poisson. o



