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1. INTRODUCTION

The differentialwequations of Mathematical
Physics are very often associated to variational principles
which state that the solution of the corresponding equation, un-
der given boundary conditions, makes a certain functional sta-
tionary on a certain space of functions.

Those methods which replace the problem of
solving the equation by the equivalent problem of seeking the
function which makes the functional stationary are called vari-
ational methods.

A classical variational technique is the Ritz
methed, which reduces the problem of the minimization of a
given functional F on a given space C to the minimization of
the same functional F on a finite-dimensional subspace C' of
£

The finite element method is also a variation-
al method in which the elements of C' are piecewise defined
on a given domain. It does not always coincide with the Ritz
Imethod, however, because the finite-dimensional set C' , on
which F is made stationary, is generally not contained in C .

It became thus necessary to generalize the

old theory to cover the new situations. New convergence the-
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orems were namely stated and demonstrated. The presentation
of such theory, using the concepts of functional analysis is the
aim of Chapter 3.

The theory supposes that an extremum prin-
ciple exists. Other variational principles (even Galerkin's
method) can be used for establishing sequences of approxima-
tions, but the convergence of such sequences cannot be proved,
within the frame of the present theory, without the help of an
extremum principle. |

Although the new convergence theorems were
established with the aim of being applied to the finite element
method, the theory has a much more general scope.
Structural and non-structural applications can indeed be con-
sidered and even the linear assumption is not necessary.

Although non-structural applications can be
covered, one of the most interesting applications of the conver-
gence theorems appears in the theory of structures as it is
shown in Chapter 4.

Chapters 5 and 6 respectively introduce the
three- and two-dimensional models of the theory of structures.
The discrete model is finally considered in Chapter 7.

A short account of the evolution of the finite
element theory and of the papers which the author has been

publishing on the subject will be presente‘d nows.



The Finite Element Method ' i

The finite element method is a discretization
technique for the solution of differential equations, the charac=-
teristic feature of which is the superposition of coordinate
fields piecewise defined on the domain.

Three stages canbe distinguished inthe meth-

a) subdivision of the domain into subdomains;

b) definition of the finite=dimensional set of fields allow=
ed within each domain (discretization of the field with=
in each subdomain);

c) definition of the interaction between the different sub-
domains, i.e. of the way in which the field within a
given subdomain is connected with the fields of the
contacting subdomains.

Different modalities can be consideredaccord-
ing as the allowed field within and the interaction between the
elements are defined.

In the oldest and most used modality, present=
ed by Turner, Clough, Martin and Topp [1] in 1956, the al-
lowed fields are defined through the displacements, and the in=-
teraction through compatibility conditions.

The second modality (hybrid elements), in
which the fields are defined through the displacements, and

the interaction through compatibility conditions, is due to Pian

[2] (1964).
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A third modality was presented by de Veubeke
[3], also in 1964, in which the fields are also defined through
the stresses, but the interaction is defined through equilibrium
~ conditions.

Finaily a fourth modality (mixed elements), in
which the fields are defined partly through the stresses, partly
through the displacements and the interaction partly through
equilibrium, partly through comfatibility conditions, was in-
troduced by Herrmann [4] in 1965,

In all the four modalities the problem arises
of which criteria must be followed for the discretization of
the field inside the subdomains.

Such problem was first discussed in con-
nection with the first modality and became critical when the
finite element technique started to be applied in the anal=-
ysis of transversely loaded plates [5] .

Up to that time it was assumed, more or less
consciously, that continuity of the displacement across the el-
ement boundaries was a necessary and sufficient condition for
the success of the method. Such condition had been satisfied
without difficulty while problems of plane elasticity were the
only ones considered. It ceased to be so with plates because,
then, the generalized displacements are the transyerse dis-

placements and the rotations of the normal to the middle plane,
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and the continuity of the rotations across the element bounda-
ries proved very difficult to achieve.

Certain unsuccessful results obtained at first
were ascribed to the violation of continuity. Nevertheless, as
soon as complete compatibility was secured with rectangular
elements [6] , it was seen that such elements yielded unsatis-
factory results, which where explained by the fact that the se-
quences of approximate solutions gefierated by systems of el-
ements with decreasing size did not converge to the exact so-
lution.

The condition of the convergence to the exact
solution appeared to be of fundamental importance, particular-
ly after having been remarked that certain corrections applied
to triangular elements, to ensure compatibility, really de=
creased the speed of convergence, which, after all, was what
was important to increase [7] .

A convergence criterion for the first modality
was presented in 1965 [8] . According to it, every possible
state of uniform strain must be allowed within the element.

In plane elasticity, such criterion requires
thaf the polynomial expression for each displacement compo-
nent contains an arbitrary constant and two linear terms mul-
tiplied by coefficients also arbitrary. Applied to the theory of
plates and accepting Kirchhoff!'s assumption, which implies that

rotations be derivatives of the transversedisplacement, the cri-
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terion requires that the expression of the later contains atleast
an arbitrary constant and all the linear and quadratic terms
also multiplied by arbitrary constants.

The above criterion was based on heuristic
considerations and was not, at first, properly speaking dem-
onstrated. A demonstration féllowed almost immediately for
the cases in which compatibility is not violated. Nothing else
was necessary than noticing that the finite element method be-
came, in such case, a particular case of the Ritz method [14] .
and then applying to the finite element method the well-known
convergence theory of the latter.

As it is known, given a certain functional F
defined on a linear space, C, Ritz method makes it possible to
determine the element of C which minimizes functional Foa
For this purpose, a sequence of linear subspaces of C with
a finite number of dimensions is considered, and the element
which minimizes F in each subspace is determined. The se-
quence of such elements converges to the exact solution, i.e.
to the one which minimizes F in C , if the sequence of linear
subspaces is complete with respect to a subset of C which
contains the exact solution, 1 e. if, given an element € what-
soever of the subset, it is possible to obtain a sequence con-
verging to € made up of elements of the successiye linear
subspaces. Such is the so=called completeness criterion.

Now, in the case of the first modality, the func-
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tional to be minirﬁized is the total potential energy and the lin-
ear space is;the set of all the compatible fields. The successive
subspaces are families of compatible fields generated by the
successive systems of elements, the number of dimensions of
~ each subspace being equal to the total number of nodal dis-

~ placements corresponding to each system.

What was demonstrated was that the conver-
gence criterion presented for the finite element method, which
- will be; from now on, more properly called completeness cri-
terion, was no more that the completeness condition with re-
spect to the set of compatible fields whose strains have bound-
ed and continuous first order derivatives within each subdomain.

The case of the first modality for which com-
patibility was violated, remained unsolved, not to speak of the
order modalities. .

Before proceeding furtiqer, it should be noted
that convergence and completeness have no meaning unless a
definition for the distance between two fields is introduced. In-
deed, a sequence of fields is said to converge to a limit when
the sequence of distances between each of its terms and the
limit tends to zero. ;

Convergence is uniform when the distance be-
tween two fields is defined in terms of the maximum modulus
of the difference between the values of the fields at each point

of the domain.
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Now, the concept of uniform convergence usu-
ally applied in the finite difference method, proves poor when
applied to a method like the finite element one closely connect-
ed with energy concepts (°).

On the other hand, it is much stronger than
needed, as in practice it is not necessary that two fields coin=-
cide at all points, in the limit. In other words, uniform con-
vergence may be replaced by energy convergence.

According to the precedent remarks, the
square root of the strain energy of the difference between two
fields was taken as the measure of the distance between them.

Such is the concept of distance used in Mikh-
lin's study on convergence in the Ritz method presented in his
famous book [1 1] on variational methods in mathematical phys-
ics. This and other basic mathematical concepts used on some
papers on finite elements were indeed supplied by Mikhlin, al-
though the finite element method itself is mentioned nowhere
in the book.

A paper [1 3] was published by the author in

(°) It is important ‘to remember, however, that it was proved by
Johnson and Mclay, [12:] in the case of the first modality with-
out compatibility being violated, that, although stresses con-
verge in the mean, displacements convergence uniformly for some
kinds of elements.
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1968 which is an attempt to describe the finite element methd\d
(first moda"‘lity) as a general method for the solution of the very
general class of elliptical equations considered by Mikhlin in
his book. Such class comprises namely Navier's equations of
two and three-dimensional elasti¢ity and Lagrange's equations
of the theory of plates. Following Mikhlin's example, the con-
cepts and language of functional analysis were used in the de-
scription.

For such description, it became necessary
to introduce the concept of principal derivatives, i.e. the de-
rivatives of the field which must be kept continuous, in order
that the energy remains bounded. In the case of Navier's equa-
tions of two and three-dimensional elasticity, principal deriv-
atives have order zero, as only the actual displacements are to
be kept continuous. In the case of Lagrange's equation, which
appears in the theory of plates if Kirchhoff's simplification is
introduced, principal derivatives have orders zero and one,
as both the transverse displacements and their first deriva-

tives must be continuous (°).

(°) However, if the transverse shear deformations are not ne-
glected, principal derivatives are again of order zero, since
the rotations of the normal to the middle surface are displace-
ments just as the transverse displacement.
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It was then demonstrated that the conmipleteness
criterion, with respect to the set of fields presenting continu-
ous and bounded second derivatives of the principal derivatives,
is that the first order derivatives of the principal derivatives
of the field can assume arbitrary constant values within each
element.

The same paper contains an analysis of con-
vergence in the general case of the continuity of the principal
derivatives being violated across the element boundaries. No-
tice that the discontinuity of the principal derivatives means
violation of compatibility if the structural theories are con-
cerned.

The basic concepts of this analysis had been
developed first in connexion with a theory of shells [1 4, 15]
involving moments with order upto N , in an attempt to prove
that the solution yielded by this theory tends to the solution sup-
plied by three-dimensional elasticity as N tends to infinity.
This demonstration was adaptéd without much difficulty to the
finite element theory, and it was readily understood then that
a general convergence theorem, applying to the passage from
a general structural model to another was implicit.

The analysis showed'that completeness alone
does not necessarily imply convergence if compatibility, or, in
general terms, if the continuity of the principal dérivatives is

not achieved across the element boundaries. A supplementary
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condition must hold, viz. that the second derivatives of the
principal dérivatives remain bounded inside the elements when
their size decreases indefinitely.

This supplementary condition was at first con-
sidered as disappointing, since cémpleteness was then believed .
to be a sufficient condition for convergence, whether compati-
bility was violated or not.

Previous work carried out by Zienkiewicz's
team [7] was certainly known which seemed to indicate that
the plate element developed by this team did not always con-
verge. It was thought however that the small convergence er=
rors observed would be explained in any other way.

It became clear however, that such uncom=
fortable results were really due to deficiency of convergence,
so that the cause was ascribed to the supplementary condition
which, it was thought, could be dispensed with.

This led to a comment [16:] on the paper in
reference, prepared in collaboration with Zienkiewicz and
Irons, in which it was explained that,”in the case of plates, no
convergence can be obtained unless the third derivatives of
the transverse displacement remain bounded within the ele-
ments when their size decreases indefinitely. This condition
is fulfilled when the elements are arranged in such a way'that.
the nodes are all of the same kind.

Analogous considerations were contained in
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a paper [17] presented at the second Dayton Cdnference on ma-
trix methods where the analysis in reference was particulariz-
ed to structural models.

The arrangement of the elements has no influ-
ence if compatibility is not violated across the element bound-
aries. On the other hand, in the case of plane or three-dimen-
sional elasticity, the second derivatives of the principal deriv-
atives (which are of order zero) are the second derivatives of
the displacements, which remain bounded whenever the field
within each element is equilibrated by body forces with bounded
density. This is particularly the case if such density vanishes.
Completeness then ensures convergence, even without compati-
bility between the elements being achieved.

At this point it was understood that it would
be convenient to work at the level of the general theory of struc-
tures. Indeed, on one hand, the studies carried out on the fi-
nite element method suggested new bases for the synthetic for-
mulation of the theory; on the other hand, it was hoped - cor-
rectly, as subsequent events confirmed - that an overall view
could help to clarify some particular cases.

The scheme o“f the synthetic formulation of the
theory of structures had already been approached by the author
in 1966, [l 8] in an attempt to unify, by means of the variation-
al theorems, the different continuous and discrete models or

theories applied in the analysis of the different types of struc-
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