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PREFACE

Problems of optimizing rocket trajectories have been extensively
studied during the last decade and general techniques of both
analytical and numerical types have been developed for their
solution. This monograph is concerned exclusively with the
analytical approach and makes no reference to qumerical
methods such as those of ‘steepest descent’ (see Kelley, H. J.
(1960) ‘Gradient Theory of Optimal Flight Paths.” Journal of the
American Rocket Society 30, No. 10, 947-954) and of ‘dynamic
programming’ (see Bellman, R. and Dreyfus, S. (1959) ‘An
Application of Dynamic Programming to the Determination of
Optimal Satellite Trajectories’. J. Brit. Interplanet. Soc. 17, Nos.
3-4, 78-83). It is true that, on account of the complex nature of
the majority of practical problems in this field, recourse to
numerical techniques is usually inevitable before an acceptable
solution is forthcoming, but the analytical approach is none the
less valuable for the following reasons: Experience teaches us
that the form of an optimal trajectory is rarely, if ever, very
critically dependent upon the data of a problem and conse-
quently if, by making suitable simplifying approximations, the
actual problem can be transformed into an idealized problem
whose solution is analytically tractable, then this latter solution
will often provide an excellent substitute for the optimal motor
thrust programme in the actual situation. All that then remains
to be done is to recompute the trajectory employing this pro-
gramme and taking account of the real circumstances. Further,
it is only by adopting the analytical approach in any field of
research, that those general principles, which lead to a real
understanding of the nature of the solutions, are discovered.
Lacking such an appreciation, our sense of direction for the
numerical attack will be defective and, as a consequence,
computations will become unnecessarily lengthy or even quite
ineffective. As for almost every other application of mathematics
to practical affairs, therefore, the analytical and numerical
approaches are here complimentary rather than alternative.
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The mathematical background assumed of the reader is
described in the preliminary section. This is approximately of the
standard normally reached by a modern honours mathematics
student after two years at the university and the book is accord-
ingly suitable as a text for a third-year course for this class of
student. Such a course, supplemented by further material from
the calculus of variations, could constitute an optional alternative
to some other branch of applied mathematics and might appeal
to students who have developed an interest in this old-established
branch of-analysis which, after a period of comparative neglect,
is now attracting considerable attention for its practical applica-
tions. But my principal aim has been to provide an introduction
to the mathematical theory of optimal trajectories for the rapidly
growing body of young space scientists in private and public
research establishments both in this country and abroad who are
becoming involved with astronautical calculations.

It gives me great pleasure to acknowledge the debt I owe my
fellow researchers in this field, the majority of whom are resident
in the United States, for the generous way in which they have
exchanged ideas with an outsider in a somewhat remote country.
I am conscious that the mode of development of the theory I have
chosen in this book owes much to the profit I have received from
this traffic. The lists of references give some indication of the
sources from which many of the subject’s fundamental ideas
derive and I hope all those who have contributed to my own
approach to the subject will find their names at appropriate
points in the text. To the Council of the University of Canterbury
for granting me a period of absence from normal university
duties during which this monograph was written, I offer my
sincere thanks. In conclusion, I should also like to express my
gratitude to Professor P. J. Hilton (Cornell University) who,
during his occupancy of the Chair of Pure Mathematics at
Birmingham University, offered me hospitality within his
department and provided me with all necessary facilities.

DEerek F. LAWDEN
DEPARTMENT OF PURE MATHEMATICS,
UNIVERSITY OF BIRMINGHAM
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PRELIMINARY REMARKS

The reader of this book is assumed to be familiar with the
material normally included in a first honours mathematics
course concerned with the analysis of functions of real variables
and with the fundamentals of the theory of differential equations.
Extensive use is made of techniques and results taken from the
calculus of variations, but these are all developed ab initio in the
first chapter, so that no preliminary acquaintance with this field
of mathematics is necessary. However, some background know-
ledge of the type of problem to which this calculus may be
applied and of the results to be expected will no doubt prove
helpful in following the argument of the first chapter, and the
reader who wishes to obtain some familiarity with this field
before proceeding further is advised to consult one of the many
texts dealing with the subject, two of the best known of which are
Courant and Hilbert (1953) and Fox (1950).

In addition to standard techniques for the differentiation of
functions of functions and of functions defined implicitly by
means of sets of equations, a theorem relating to the conditions
under which a set of implicit functions is properly defined by a
set of equations, plays an important role in the argument of
Chapter 1 (p. 13). For a proof of this theorem, the reader is
referred to Goursat (1904).

The existence of certain sets of functions has been assumed at
some points in the first chapter (p. 8, p. 10, p. 13, p. 22). For a
rigorous demonstration of their existence, the reader should con-
sult the standard work in the English language on the calculus
of variations, viz. Bliss (1946). At appropriate points in the
argument, this book is referred to by the author’s name followed
by a page number.

A knowledge of the Newtonian mechanics of a particle,
including the basic formulae relating to the motion of a particle
in an inverse square Jaw field of attractive force, is also assumed
to be possessed by the reader. All such formulae will be found
derived in the book by Lawden (1961). Wherever necessary, this
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book is referred to as ‘Lawden’, and a page number is stated.
Tpe reader who requires further information bearing on the
subject of this monograph should consult the comprehensive

bibliography to be found at the close of the survey article by
Leitmann, (1962).
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1
THE PROBLEM OF MAYER

1.1. Introduction

This book concerns itself with the problem of finding the tra-
jectory a rocket must follow if it is to accomplish some specified
mission in an optimal manner as judged against some criterion
of a quantitative nature. The mission may be a military one as,
for example, when an intercontinental missile is launched with
the object of transporting an atomic bomb payload to a given
target areay or the mission may have a scientific object, as when
a rocket probe, carrying a payload of observing instruments,
is to be guided into an orbit about the Moon or a planet. In the
not too distant future, it is to be expected that the mission will
frequently have for its object the transport of a human cargo
to another body in the solar system or beyond. In most cases,
optimization of the trajectory with respect to propellent expendi-
ture will be desired, since this will permit the largest payload
to be delivered for a given size of vehicle and we shall accord-
ingly pay particular attention to this case.

However, although economy of propelient expenditure will
often be the most pressing requirement, circumstances in which
allowance must also be made in the optimization criterion for
other factors, are easily envisaged. For example, in the case of a
spaceship transporting a human cargo, the quantities of food and
supplies which have to be carried will be proportional to the time
of transit between the two terminals for the journey ‘and, for
this reason, it may prove desirable to reduce this time at the cost
of some additional expenditure of propellent, with the ultimate
object of minimizing the overall weight of the vehicle. The
criterion for optimization will then involve a combination of
the two quantities, mass of propellent and time of transit. The
techniques we shall develop will be applicable to optimization
problems of this more complex nature, but we have thought it
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advisable, in an introductory work such as this monograph is
intended to be, to confine our attention to problems whose
mathematical statement is simply expressed, in order that the
principal features of our methods should not be obscured by
irrelevant details. It should, however, be mentioned here that our
analysis will reveal that the equations governing the arcs from
which the optimal trajectory must be constructed are quite
independent of the optimization criterion. Much of the argu-
ment, therefore, is perfectly relevant to the issue, no matter what
criterion is ultimately adopted.

Although the mathematical theory of this chapter has been
constructed with the express object of applying it to rocket
trajectory problems, it can also be employed in many other
problem situations. In particular, it has received application to
the problem of optimizing the response of control systems and
servomechanisms and, in this connection, reference may be made
to the work of the Russian mathematician Pontryagin who has
based similar techniques upon an alternative mode of develop-
ment of the mathematical theory. An account in English of
his approach will be found in a paper due to R. E. Kopp
(1962).

1.2. Synopsis of Results

As was first noticed by Cicala and Miele (1956) and Miele (1958),
the problem of optimizing a rocket trajectory is a particular case
of a general mathematical problem from the calculus of varia-
tions associated with the name of Mayer. In this chapter, we
state the Mayer problem in a form which differs from that given
by Bliss (p. 189) in that certain parameters, termed the control
functions, are permitted to enter,into the constraining eqs (1.1),
(1.3), whilst their derivatives are absent from these conditions.
We then obtain a number of sets of conditions which are neces-
sarily satisfied by a solution to the problem, the line of argument
being that due to Bliss, modified where necessary to make allow-
ances for the intrusion of the control functions. The boundary
conditions (eqs (1.2), (1.4)) are not in the very general form
given by Bliss, but are sufficiently so for our present purpose.
The sets of necessary conditions will be found stated on pages
16, 19, 25 and 26.

In Chapter 2, we make our first application of the general
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theory to a number of problems relating to terrestrial rocket
trajectories, viz. maximization of the range of a rocket missile,
optimal launching of a satellite into orbit and optimization of the
performance of an atmospheric sounding rocket.

The theory of optimal rocket trajectories in a general gravita-
tional field, when it is assumed that there is no atmospheric
resistance, is developed in Chapter 3. It is shown (p. 59) that the
conditions to be satisfied by the required trajectory are conven-
iently expressed in terms of a switching function x and a primer
vector p, k determining the instants of transition from one motor
thrust phase to the next and p the direction of the motor thrust.
In the special, but practically important, case when the possible
motor thrust is assumed to be of unlimited magnitude, it is
demonstrated that the conditions can all be expressed in terms
of the primer vector alone (p. 63). The cases when optimization
is to be carried through with respect to propellent expenditure
and the net final vehicle energy (the escape problem), are given
particular consideration.

The simplification which occurs when the gravitational field is
uniform is indicated in Chapter 4, and it is demonstrated that a
fairly complete theory can be offered to cover this case. It is
shown (p. 72) that, in general, there can be at most three distinct
thrust phases and that these occur in the sequence, maximum
thrust, null thrust, maximum thrust. In special circumstances,
when the boundary conditions are favourable, a phase during
which the motor thrust is not a maximum can occur but, in this
case, the solution is not unique and a solution involving null
and maximum thrust phases alone is always available (p. 7).

The extremal arcs, from which any optimal trajectory must be
constructed (irrespective of the optimization criterion) when the
gravitational field obeys an inverse square law of attraction to a
point, are discussed in Chapter 5, and the form taken by the
primer vector on such arcs is calculated. The results obtained are
employed in the final chapter to analyse a number of orbital
transfer problems in a plane. It is proved (p. 106) that, if the opti-
mal trajectory contains a circular arc and if the motor thrust is
unlimited, then the trajectory is formed from conic arcs with
their axes all aligned and tangential to one another at their
apses; the thrusts are then all impulsive and are applied at these
apses in a tangential direction. In particular, the case of transfer
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between two circular orbits is discussed in detail and the Hoh-
mann mode of transfer via a single cotangential ellipse is proved
to be optimal provided the ratio of their radii is not too great
(p. 110). Optimal escape from any orbit is proved (p. 111) to be
effected by the application of impulsive thrusts alone and the
escape trajectory to consist of conic arcs with their axes aligned
and tangential to one another at their apses. Finally, the optimal
two-impulse transfer manceuvre between any two coplanar
orbits is studied in some detail and a set of equations derived
(p. 118) from which the elements of the transfer orbit can be
calculated in any particular case.

1.3. Statement of the Mayer Problem

The calculus of variations is concerned with the problem of
minimizing or maximizing functionals, a functional being a
quantity whose value depends upon the sets of values taken by
certain associated functions over domains of their variables for
which they are defined. Thus, the quantity I defined by the
equation .

1= j:ﬂx) dx

is a functional, for its value depends upon the values assumed by
the function f(x) over the interval 0 <(x<l. Clearly, a functional
is a mathematical entity which has a more complex nature than
a function, since it depends for its value, not on the values taken
by a finite set of variables, but on the, in general, infinite set of
values assumed by a function over its domain of definition.

The problem of Mayer which we are about to formulate
relates to the minimization of a quantity which depends upon
a number of functionals, the values of which are related to the
forms taken by certain unknown functions occurring as para-
meters in a given set of differential equations. Specifically, given
m functions o;() (j=1, 2, ..., m), n further functions x;(r)
(i=1, 2, . . ., n) are to satisfy differential equations of the
form

-x'f=ﬁ(x1’ e o oy Xn, 0'1’ . o oy A,y t)’ (1'1) .
where, as usual, x; denotes dx;/dz. These equations are to be
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valid for 7y<r<(#; and the a; are defined throughout this interval
as continuous functions apart from a finite number of finite
discontinuities. The functions f; are continuous in all their
arguments and possess continuous partial derivatives of an order
sufficient to validate all our subsequent arguments and these
derivatives are defined over a region sufficiently extensive to
include all values of the x;, a; and ¢ to be encountered, as interior
points. The initial values of the x; at t=t, are specified by the
equations

Xi=X4o (1.2)

and it follows that the eqs (1.1) determine the functions x;(¢)
uniquely over the interval (7, #;) when the a;(f) are given. The
x; so determined will be continuous functions of ¢, but their
derivatives may be discontinuous at points of discontinuity of
the a;.

The functions a;(¢) will be termed the control functions and the
x¢(f) will be referred to as the state functions; they are required to
satisfy certain constraining equations, viz.

gk(x],» s o oy xﬂ, a’la .oy Qppy t)=0’ (1'3)

where k=1, 2, . . ., p<m and the g; are continuous and possess
continuous partial derivatives of sufficiently high order in all
their arguments. The control functions are also required to be

such that the functions x;, x,, . . ., xq take prescribed values at
t=t;. Thus, for 1=1¢,
xi=x,01=1,2. 55q. 1.9

and g<z. The control functions can otherwise be chosen arbi-
trarily. The existence of control functions satisfying the con-
straints (1.3), (1.4) will be assumed.

Let xg+1, 1, Xg+25 15 - - -» Xny e the values of the x; at t=¢,
not fixed by the constraints (1.4). Then our problem is to find
control functions a; determining the x; so that the constraints
(1.3), (1.4) are satisfied and also so that a given function

J(xg+15 15 Xg+2s 15 + + +» Xn1) 1.5)
is minimized. !
The problem can be generalized by permitting #; to be variable.
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In this case, we shall permit J to depend upon this quantity also
and write

J=J(XQ-|;1, 15 » + o Xm1s tl)' (1.6)
J is then to be minimized with respect to #, also.

J will be supposed continuous in all its variables and to possess
continuous partial derivatives of sufficiently high order.

1.4. Admissible Variations

In general, there will exist infinitely many sets of functions
xi(9), a;(?) satisfying the egs (1.1)—(1.4) and to each set there will
correspond a value of J. Among these sets, we shall suppose that
there is one which generates a minimum value for J. This minimal
set will henceforward be denoted by xi(?), a;(?).

However it will be convenient first to consider a wider class of
sets of functions for which J is defined and including the minimal
set as a member. This is the class of admissible sets comprising
those functions which satisfy the constraints (1.1), (1.3), but do
not necessarily satisfy the end conditions (1.2), (1.4). It will be
assumed that a one-parameter family of such admissible sets
can be found including the minimal set as one of its members.
This sub-class of admissible sets will be denoted by x(z, e),
ay(t, €), where € is the parameter and e=0 corresponds to the
minimal set. Thus

xi(t, 0)=xi(0), ay(t, 0)=0a4(®). aa.n

The functions xi(z, €), %i(t, €) and a;(¢, €) will be supposed to
possess continuous first derivatives with respect to e, for €
satisfying | € | <¢, and for ¢ in the interval (Z, #,); these func-
tions will also be supposed to possess, for the same values of
e and ¢, the continuity properties relative to ¢ enunciated in
section 1.3. In the case when ¢, is variable, we shall also make this
quantity dependent upon e and take #,(0)=1#, to be the end value
appropriate to the minimal set.
Substituting

xi=xi(t,€), ay=a4(t, € 1.8)

into egs (1.1), these must be satisfied identically with respect to
both ¢ and e. Hence, differentiating both sides with respect to e,
it is found that
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Pxy  Ofy Oxr 0Ofi Oay
Pe ot Oxp e oy B .9)

it being understood that the two terms of the right-hand member
of this equation are to be summed with respect to r (1, 2, . . o )
and j (1, 2, ..., m) respectively, according to the well—known
repeated mdex summation convention. (This summation con-
vention will be operative throughout the book and it is con-
venient here to state the integral values over which the various
literal subscripts employed in this chapter are supposed to range.
These are as follows:

i=1, 2 s by =02 S s K= I e
i oy 'r=1,2,0.5n" s=q+1;9+2,...;n; } (1.10)
t=p+1,p+2,...,m.)

Putting e=0 in eq (1.9), this can be written

: 9
=yt 28 @1

0
()= (8_8):_‘) » Bi(n= ( ;:) o 1.12)
e=0 e=

and the arguments of 0fi/0x,, 0fi/0a; are the functions xy(f),
aj(9) of the minimal set. The functions y;, B; possess the con-
tinuity properties of the functions x;, a; respectively and will be
termed the variations of the minimal set with respect to the
family.

Again, substituting from egs (1.8) into the constraints (1.3)
and differentiating with respect to e, it is found that

Ogr Oxi Ogx Oaj s

where

— a—t5— = 1.13
T O iy oe W
Putting e=0, this reduces to
337: agk
1.14
a aa ; Bf ( )

where the arguments of Ogy/Oxi, Ogr/0a; again refer to the
minimal set. i
It has been shown, therefore, that the one-parameter family of
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admissible sets of functions must be such that egs (1.11) and
(1.14) are satisfied by its variations identically with respect to z.
We shall assume, conversely, that if any set of functions ys(),
B;i(®) is found to satisfy the egs (1.11), (1.14), then a one-para-
meter family of admissible sets, including the minimal set, can
be found, whose variations are these functions. A proof of this
imbedding theorem will be found in Bliss (p. 196). Such a set of
functions y(2), Bj(?) will be termed a set of admissible variations
for the minimal set x;(7), a;(¥).

1.5. The First Variation of J

Constructing J (eq (1.6)) for the members of the family of
admissible sets defined in the previous section, it becomes a
function of the parameter €. The value of dJ/de at e=0 will be
termed the first variation of J with respect to the family and we

shall write :
d.l) '
= =J;. (1.15)
(de €=0 ¢

xoy=Xslti(el, H=1(0), (1.16)

Substituting

in eq (1.6) and differentiating with respect to ¢, it follows that

ds aJ ax; dtl ax, oJ dtl
Yo (2R ) v 1.17
de ax,l( ot; de > ot; de M
Putting e=0, this reduces to

) oJ

Jl:axsl (xslu1+ysl)+a—tl—u1, (1.18)

where

Pl b ) R (1.19)

de /oo

and the arguments of the partial derivatives of J refer to the
minimal set. %, will be called the variation of the end point.

We shall now transform the expression (1.18) for J; into a
form more convenient for the subsequent argument. This is
carried out by introducing certain auxiliary functions Ay(?),



