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Preface to the Third Edition

The book has been completely rewritten for this new edition. While most
of the material found in the earlier editions has been retained, though in
changed form, there are considerable additions, in which extensive use is
made of Fourier transform techniques, Hilbert space, and finite difference
methods.

A condensed version of the present work was presented in a series of
lectures as part of the Tata Institute of Fundamental Research — Indian Insti-
tute of Science Mathematics Programme in Bangalore in 1977. I am indebted
to Professor K. G. Ramanathan for the opportunity to participate in this excit-
ing educational venture, and to Professor K. Balagangadharan for his ever
ready help and advice and many stimulating discussions. Very special thanks
are due to N. Sivaramakrishnan and R. Mythili, who ably and cheerfully
prepared notes of my lectures which I was able to use as the nucleus of the
present edition.

A word about the choice of material. The constraints imposed by a
partial differential equation on its solutions (like those imposed by the
environment on a living organism) have an infinite variety of con-
sequences, local and global, identities and inequalities. Theories of such
equations usually attempt to analyse the structure of individual solutions
and of the whole manifold of solutions by testing the compatibility of the
differential equation with various types of additional constraints. The
problems arising in this way have challenged the ingenuity of mathemati-
cians for centuries. It is good to keep in mind that there is no single
“central” problem; new applications commonly lead to new questions
never envisioned before. In this book emphasis is put on discovering
significant features of a differential equation, and on exploring them as far
as possible with a limited amount of machinery from mathematical analy-
sis. Entanglement in a mass of technical details has been avoided, even
when this resulted in less general or less complete results.

New Rochelle, N.Y. Fritz John
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The single first-order equation*

1. Introduction

A partial differential equation (henceforth abbreviated as P.D.E) for a
function u(x,y,...) is a relation of the form

F(x,y,...,u,ux,uy,..., s Uy -+ ) =0, (1.1)

where F is a given function of the independent variables x, Y,..., and of
the “unknown” function u and of a finite number of its partial derivatives.
We call u a solution of (1.1) if after substitution of u(x,y, .. .) and its partial
derivatives (1.1) is satisfied identically in x,y,... in some region Q in the
space of these independent variables. Unless the contrary is stated we
require that x,y,... are real and that « and the derivatives of u occurring in
(1.1) are continuous functions of x,y,... in the real domain Q.' Several
P.D.E:s involving one or more unknown functions and their derivatives
constitute a system.

The order of a P.D.E. or of a system is the order of the highest
derivative that occurs. A P.D.E. is said to be linear if it is linear in the
unknown functions and their derivatives, with coefficients depending on
the independent variables x,y,.... The P.D.E. of order m is called quasi-
linear if it is linear in the derivatives of order m with coefficients that
depend on x,y,... and the derivatives of order < m.

* (7}, (13], [26]

tFor simplicity we shall often dispense with an explicit description of the domain Q.
Statements made then apply “locally,” in a suitably restricted neighborhood of a point of
Xy ...-space.



1 The single first-order equation

2. Examples

Partial differential equations occur throughout mathematics. In this section
we give some examples. In many instances one of the independent vari-
ables is the time, usually denoted by 7, while the others, denoted by
Xj,Xp.+5%, (of by x,y,z when n<3) give position in an n-dimensional
space. The space differentiations often occur in the particular combination
2 2
Ay e @.1)
0x;,

known as the Laplace operator. This operator has the special property of
being invariant under rigid motions or equivalently of not being affected

by transitions to other cartesian coordinate systems. It occurs naturally in
expressing physical laws that do not depend on a special position.

(i) The Laplace equation in n dimensions for a function u(x,,...,X,) is
the linear second-order equation
Bih =l il 5+ 55 g, ==l 2.2)

This is probably the most important individual P.D.E. with the widest
range of applications. Solutions u are called potential functions or harmonic
functions. For n=2, x,=x, x,=y, we can associate with a harmonic
function u(x,y) a “conjugate” harmonic function v(x,y) such that the
first-order system of Cauchy—Riemann equations

u,=v, u,=—0v, (2.3)
is satisfied. A real solution (u,v) of (2.3) gives rise to the analytic function
f()=f(x+iy)=u(x,y) +iv(x.y) (24)

of the complex argument z=x+iy. We can also interpret (u(x,y),

— v(x,y)) as the velocity field of an irrotational, incompressible flow. For

n=3 equation (2.2) is satisfied by the velocity potential of an irrotational

incompressible flow, by gravitational and electrostatic fields (outside the

attracting masses or charges), and by temperatures in thermal equilibrium.
(i) The wave equation in n dimensions for u= u(xpy...sX,, 1) i8

u,=c*Au (2.5)

(c=const.>0). It represents vibrations of strings or propagation of sound
waves in tubes for n=1, waves on the surface of shallow water for n=2,
acoustic or light waves for n=3.

(iii) Maxwell’s equation in vacuum for the electric vector E =(E,EyE5)
and magnetic vector H=(H,, H,, H;) form a linear system of essentially 6
first-order equations

¢eE,=curl H, pH,=—curl E (2.6a)

divE=divH=0 (2.6b)



2 Examples

with constants &, pu. (If relations (2.6b) hold for =0, they hold for all 7 as a
consequence of relations (2.6a)). Here each component E,, H, satisfies the
wave equation (2.5) with ¢>=1/¢p.
(iv) Elastic waves are described classically by the linear system

0%, 9
s ) 2 (di 7
Pap = Bl +HA+p) o, (divu) (2.7)
(i=1,2,3), where the u,(x,, x,, x5, ) are the components of the displacement
vector u, and p is the density and A,p the Lamé constants of the elastic
material. Each u; satisfies the fourth-order equation

32 A+2p )(82 B )
L Al — — =A)u,=0, 2.8
(at2 [ YR 28)

formed from two different wave operators. For elastic equilibrium (u,=0)
we obtain the biharmonic equation

A%u=0. 2.9
(v) The equation of heat conduction (“heat equation™)
u=kAu (2.10)

(k=const.>0) is satisfied by the temperature of a body conducting heat,
when the density and specific heat are constant.

(vi) Schridinger’s wave equation (n=3) for a single particle of mass m
moving in a field of potential energy V (x,y,z) is
h2

== m

Ay+ Wy, (2.11)

where h=2xh is Planck’s constant.

The equations in the preceding examples were all linear. Nonlinear
equations occur just as frequently, but are inherently more difficult, hence
in practice they are often approximated by linear ones. Some examples of
nonlinear equations follow.

(vii) A minimal surface z=u(x,y) (i.e., a surface having least area for a
given contour) satisfies the second-order quasi-linear equation

(1+ w)u,, —2u,uu,, +(1 +ul)u,, =0. (2.12)

(viii) The velocity potential ¢(x,y) (for velocity components ¢, ¢,) of a
two-dimensional steady, adiabatic, irrotational, isentropic flow of density p
satisfies

(1= 7262 ber —2¢ 2, 9,0, +(1— ¢ %9?)9,, =0, (2.13)
where ¢ is a known function of the speed q=\/¢f+¢y2 . For example
-1 °
A=1— Yqu (2.14)
for a polytropic gas with equation of state
p=Ap". (2.15)

3



1 The single first-order equation

(ix) The Navier—Stokes equations for the viscous flow of an incompress-
ible liquid connect the velocity components #, and the pressure p:

Ay dy; 1 9p
N ; o " b ax,

2 Qe o, (2.16b)

9x;,

+vAu, (2.162)

where p is the constant density and y the kinematic viscosity.
(x) An example of a third-order nonlinear equation for a function u(x, f)
is furnished by the Korteweg—de Vries equation

u+cuu,+u,, =0 (2.17)

first encountered in the study of water waves.

In general we shall try to describe the manifold of solutions of a P.D.E.
The results differ widely for different classes of equations. Meaningful
“well-posed” problems associated with a P.D.E. often are suggested by
particular physical interpretations and applications.

3. Analytic Solution and Approximation Methods
in a Simple Example*

We illustrate some of the notions that will play an important role in what
follows by considering one of the simplest of all equations

u,+cu,=0 (3.1
for a function u= u(x,?), where c=const.>0. Along a line of the family
x—ct=const.=§ (3.2)
(“characteristic line” in the xz-plane) we have for a solution u of (3.1)
du _ d _ _
T dtu(ct+§,t)—cux+u,—0.

Hence u is constant along such a line, and depends only on the parameter

§ which distinguishes different lines. The general solution of (3.1) then has
the form

u(x,0)=f(§)=f(x—c1). (3.3)

Formula (3.3) represents the general solution u uniquely in terms of its
initial values

u(x,0)=f(x). 34)
Conversely every u of the form (3.3) is a solution of (3.1) with initial values
f provided f is of class C'(R). We notice that the value of u at any point

(x,7) depends only on the initial value f at the single argument £= x — ct,
the abscissa of the point of intersection of the characteristic line through

*((16], [18], [25]D
4



3 Analytic Solution and Approximation Methods in a Simple Example

(x,t)

x—ct=¢§

i
Figure 1.1

(x, ) with the initial line, the x-axis. The domain of dependence of u(x,?) on
the initial values is represented by the single point £ The influence of the
initial values at a particular point £ on the solution u(x,?) is felt just in the
points of the characteristic line (3.2). (Fig. 1.1)

If for each fixed ¢ the function u is represented by its graph in the
ut-plane, we find that the graph at the time =T is obtained by translating
the graph at the time =0 parallel to the x-axis by the amount cT"

u(x,0)=u(x+cT,T)=f(x).
The graph of the solution represents a wave propagating to the right with
velocity ¢ without changing shape. (Fig. 1.2)

We use this example with its explicit solution to bring out some of the
notions connected with the numerical solution of a P.D.E by the method of
finite differences. One covers the xt-plane by a rectangular grid with mesh
size h in the x-direction and k in the t-direction. In other words one
considers only points (x,f) for which x is a multiple of # and ¢ a multiple
of k. It would seem natural for purposes of numerical approximation to
replace the P.D.E. (3.1) by the difference equation

v(x,t+kz v(x,1) +cv(x+h,tz v(x,1) - (3.5)

Formally this equation goes over into v,+cv, =0 as h,k—0. We ask to

t

u(x, o) u(x,T)

X x+cT

Figure 1.2
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what extent a solution v of (3.5) in the grid points with initial values

o(x,0)=f(x) (3.6)
approximates for small 4,k the solution of the initial-value problem (3.1),
(3.4).
Setting A=k / h, we write (3.5) as a recursion formula

o(x,t+k)=(1+Ac)v(x,1) —Aco(x + h,t) (3.7)

expressing v at the time ¢+ k in terms of v at the time ¢. Introducing the
shift operator E defined by

Ef(x)=f(x+h), (3.8)
(3.7) becomes
o(x,t+k)=((1+Ac) —AcE )o(x,1) (3.8a)

for t=nk this immediately leads by iteration to the solution of the
initial-value problem for (3.5):

v(x,1)=0v(x,nk)=((1+Ac)—AcE)"v(x,0)

-3 (2)(1+Ac)"(=AcE)" ™ "f(x)
m=0

n
= (;l)(l+>\c)'"(—>\c)"_'"f(x+(n—m)h). (3.9)
m=0

Clearly the domain of dependence for v(x,)=v(x,nk) consists of the set

of points
x, x+h, x+2h, ..., x+nh (3.10)
on the x-axis, all of which lic between x and x + nh. The domain of the
differential equation solution consists of the point §=x—ct=x—Anh,
which lies completely outside the interval (x,x + nh). It is clear that v for
h,k—0 cannot be expected to converge to the correct solution u of the
differential equation, since in forming v(x,f) we do not make use of any
information on the value of f(£), which is vital for determining u(x, ), but
only of more and more information on f in the interval (x,x +(¢/A)) which
is irrelevant. The difference scheme fails the Courant—Friedrichs—Lewy test,
which requires that the limit of the domain of dependence for the dif-
ference equation contains the domain of dependence for the differential

equation.

That the scheme (3.5) is inappropriate also is indicated by its high
degree of instability. In applied problems the data f are never known with
perfect accuracy. Moreover, in numerical computations we cannot easily
use the exact values but commit small round-off errors at every step. Now
it is clear from (3.9) that errors in f of absolute value ¢ with the proper
(alternating) sign can lead to a resulting error in v(x, )= v(x,nk) of size

e 2 (2)(1+Ac)"(Ae)" ™" =(1+2Ac)"e. (3.11)
m=0



3 Analytic Solution and Approximation Methods in a Simple Example

Thus for a fixed mesh ratio A the possible resulting error in v grows
exponentially with the number n of steps in the z-direction.

A more appropriate difference scheme uses “backward” difference
quotients:

o(x,t+k)—v(x,1)  o(x,t)—v(x—h,t) B
X +c A =

0 (3.12)
or symbolically
o(x,1+k)=((1—-Ac) +AcE ~")o(x,1). (3.13)

The solution of the initial-value problem for (3.13) becomes

vo(x,t)=v(x,nk)= i (r':,)(l—)\c)"'(}\c)"""f(x—(n—m)h). (3.14)

m=0
In this scheme the domain of dependence for v(x,f) on f consists of the
points

x, x—h, x=2h, ..., x—nh=x—% (3.15)

Letting h,k—0 in such a way that the mesh ratio A is held fixed, the set
(3.15) has as its limit points the interval [x —(z/A),x] on the x-axis. The
Courant-Friedrichs-Lewy test is satisfied, when this interval contains the
point £ = x — ct, that is when the mesh ratio A satisfies

Ac< 1. (3.16)

Stability of the scheme under the condition (3.16) is indicated by the fact
that by (3.14) a maximum error of size ¢ in the initial function f results in a
maximum possible error in the value of v(x,#)=v(x,nk) of size

€ i (,’:l)(l—}\C)'"(AC)"""=8((I—}\c)+}\c)"=e. (3.17)
m=0

We can prove that the v represented by (3.14) actually converges to
u(x,t)=f(x—ct) for h,k—0 with k/h=\ fixed, provided the stability
criterion (3.16) holds and f has uniformly bounded second derivatives. For
that purpose we observe that u(x,?) satisfies

|u(x,t+ k) —(1=Ac)u(x,t) —Acu(x — h,t)|
=|f(x—ct—ck)—(1=Ac) f(x—ct)—Acf(x—ct— h)| < Kh?, (3.18)
where
K=1(cA\2+Ac)supl|f”], (3.19)

as is seen by expanding f about the point x — cz. Thus, setting w=u—v we
have

[w(x,t+k)—(1=Ac)w(x,1) —Aew(x — h,1)| < Kh?
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and hence

sup |w(x,?+ k)| <(1—Ac) sup |w(x, )| +Acsup |w(x — h,1)| + Kh?
= sup |w(x,?)| + Kh%. (3.20)

Applying (3.20) repeatedly it follows for #=nk that o
|u(x,8) — v(x,1)| < sup |w(x,nk)|

< sup |w(x,0)|+ nKh?= %f}l .

since w(x,0)=0. Consequently w(x,#)—0 as h—0, that is, the solution v of
the difference scheme (3.12) converges to the solution u of the differential
equation.

PROBLEMS

1. Show that the solution v of (3.12) with initial data f converges t6 u for ~—0 and
a fixed A< 1/c¢, under the sole assumption that f is continuous. (Hint: the fact
that both » and v change by at most ¢ when we change f by at most e.)

2. To take into account possible round-off errors we assume that instead of (3.13) v
satisfies an inequality
|o(x,t+ k) —(1—Ac)o(x,1) —Aco(x —h,t)| < 8.
Show that for a prescribed § and for K given by (3.19) we have the estimate

()= o(e )| <K+ Ls (321)

assuming that (3.16) holds and that v(x,0)=f(x). Find values for A and & based
on this formula that will guarantee the smallest maximum error in computing
u(x,t).

3. Instability of a difference scheme under small perturbations does not exclude
the possibility that in special cases the scheme converges towards the correct
function, if no errors are permitted in the data or the computation. In particular
let f(x)=e* with a complex constant a. Show that for fixed x, ¢ and any fixed
positive A=k /h whatsoever both the expressions (3.9) and (3.14) converge for
n—oo towards the correct limit e**~<), (This is consistent with the
Courant-Friedrichs—Lewy test, since for an analytic f the values of f in any
interval determine those at the point § uniquely.)

4. Quasi-linear Equations

The general first-order equation for a function u=u(x,y,...,z) has the
form

fop,..uunu,. .. ,u,)=0. 4.1

Equations of this type occur naturally in the calculus of variations, in
particle mechanics, and in geometrical optics. The main result is the fact

8



4 Quasi-linear Equations

that the general solution of an equation of type (4.1) can be obtained by
solving systems of Ordinary Differential Equations (O.D.Ess for short).
This is not true for higher-order equations or for systems of first-order
equations. In what follows we shall mostly limit ourselves to the case of
two independent variables x,y. The theory can be extended to more
independent variables without any essential change.

We first consider the somewhat simpler case of a quasi-linear equation

a(x,y,u)u, + b(x,y,u)u, = c(x,y,u). 4.2)
We represent the function u(x,y) by a surface z=u(x,y) in xyz-space.
Surfaces corresponding to solutions of a P.D.E. are called integral surfaces
of the P.D.E. The prescribed functions a(x,y,z),b(x,y,z),c(x,y,z) define a
field of vectors in xyz-space (or in a portion € of that space). Obviously
only the direction of the vector, the characteristic direction, matters for the
P.D.E. (4.2). Since (u,,u,, — 1) constitute direction numbers of the normal
of the surface z=u(x,y), we see that (4.2) is just the condition that the
normal of an integral surface at any point is perpendicular to the direction
of the vector (a,b,c) corresponding to that point. Thus integral surfaces are
surfaces that at each point are tangent to the characteristic direction.

With the field of characteristic directions with direction numbers (a,b,¢)
we associate the family of characteristic curves which at each point are
tangent to that direction field. Along a characteristic curve the relation

dx _ _ dy __ dz
a(x,y,z)  b(x,y,z) c(x.y,2)
holds. Referring the curve to a suitable parameter ¢ (or denoting the
common ratio in (4.3) by df) we can write the condition defining character-
istic curves in the more familiar form of a system of ordinary differential
equations
-‘;—): =a(x,y,z), c_;)z? =b(x,y,2), % =c(x,y,2). (4.4)
The system is “autonomous” (the independent variable ¢ does not appear
explicitly). The choice of the parameter ¢ in (4.4) is artificial. Using any
other parameter along the curve amounts to replacing a,b,c by propor-
tional quantities, which does not change the characteristic curve in xyz-
space or the P.D.E. (4.2). Assuming that a,b,c are of class C! in a region
Q, we know from the theory of O.D.E.s that through each point of § there
passes exactly one characteristic curve. There is a 2-parameter family of
characteristic curves in xyz-space (but a 3-parameter family of solutions
(x(9),y(1),z(2)) of (4.4), since replacing the independent variable ¢ by ¢+ ¢
with a constant ¢ changes the solution (x,y,z), but not the characteristic
curve, which is its range).

If a surface S: z=u(x,y) is a union of characteristic curves, then S 1s an
integral surface. For then through any point P of S there passes a
characteristic curve y contained in S. The tangent to y at P necessarily lies
in the tangent place of S at P. Since the tangent to y has the characteristic

(43)

9



