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PREFACE

Translation invariant Banach means on spaces of func-
tions associated with a topological group have interested gen-
erations of mathematicians since the appearance of von Neu-
mann’s article [72], which deals with discrete groups. These
invariant means are generally created by highly non-construc-
tive methods—most often by invoking the Hahn-Banach Theo-
rem—and have many strange properties, thus they are often
thought of as mathematical curiosities. However, in recent
years, some remarkably diverse properties of locally compact
groups have been found to depend on the existence of a Ba-
nach invariant mean on an appropriate translation-invariant
space of functions. One of the most striking results is the

following.

Theorem: If @ is a locally compact group, there exists a
left invariant mean on L*(@) if and only ifevery irreducible
unitary representation of @ is weakly contained in the left

regular representation.

We give a self-contained exposition, accessible to anyone
with a modest understanding of functional analysis, of this
and many other recent discoveries relating existence of invari-
ant means to algebraic and geometric properties of a locally

compact group.
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In the past authors have considered invariant means on a
number of spaces of functions; for example, Hulanicki [37]
discusses left invariant means on L* in studying the weak
containment property above, Rickert [66] shows that the ‘‘fix-
ed point property’’ for G is tied to the existence of a left in-
variant mean on the bounded right uniformly continuous func-
tions on G (see section 3.3), and Glicksberg [21], Reiter [58]
relate ergodic properties of G to existence of an invariant
mean on the space CB(G) of bounded continuous functions
(see section 3.7). The connection between these various
types of invariant means is not at all apparent. We shall
prove (combining recent work of the author and Namioka) that
these diverse notions of invariant mean are all equivalent for
locally compact groups (Theorem 2.2.1); using this equiva-
lence we shall unify many results in the literature and divest
them of restrictive hypotheses.

In the past there have been several papers which recount
the then current state of the literature: the articles by Dix-
mier [11], Day [8], and Hewitt-Ross [34] (sections 17-18) are
quite helpful and are accessible to most mathematicians. All
were written before the equivalence of invariant means was
recognized (a very recent development) and before the most
important applications had appeared in the literature; we pre-
sent direct, self-contained accounts of these modern develop-
ments. Some of these results are difficult to extract from the
scattered literature on invariant means, and many are present-
ed with new proofs, simpler than those which appear in the
literature.
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These notes are based on lectures presented at Berkeley
in the Spring and Fall 1966 quarters. They have benefitted
greatly from the author’s correspondence with A. Hulanicki,
I. Namioka, E. Granirer and W. R. Emerson, and from numerous

conversations with colleagues and visiting faculty at Berkeley.

Frederick P. Greenleaf
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real numbers

complex numbers

integers

[f defined on a group]

[f defined on any semigroup or group]

[/ defined on any semigroup or group]

real part of a function f

difference of sets 4, B

(A\B)U (B\4), the symmetric difference
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characteristic function of A4

1 X 4> normalized characteristic function

r4r

of A

Dirac measure [point mass] at z



7963140

\
CONTENTS
Preface. . . . ... ... . i X
Section 1. Invariant Means on Discrete Groups
and Semigroups . . .. ... ... ... .. 1
§1.1 Means and invariant means (elementary
properties). . . . ... . o oo 1
§1.2 Construction of invariant means . . ... .. 4

§1.83 Von Neumann’s work on invariant measures 13

Section 2. Invariant Means on Locally Compact

§
§

§
§

2.1

2.2

2.3
2.4

Groupss s s s v omaswa v aso a® s o s 21
Various definitions of invariant means on
topological groups. . .. ......... ... 21
Equivalence of various types of invariant
MEANS « v v v v v v v et v e et e e e e e 26

Combinatory properties of amenable groups 29

The celebrated method of Day .. ...... 33 .

Section 3. Diverse Applications of Invariant

Means . .. ... ... ... .. .. c.... 37

Means on weakly almost periodic functions 87
Reiter’s work in harmonic analysis

(Reiter’s condition) . . .. ........... 43
The fixed point property . . .. ........ 49
A classic application to representation

theorys s nsissancisnsnssmmmas s 56
Weak containment of irreducible represen-
tations . . . ... e e e 59
Fglner’s condition . .............. 64

Ergodic properties of amenable groups. .. 72
Weakly almost periodic semigroups of
OPOTALOrSs; o s ' & s 5.5 1 5 9 5 5 6 = & 3 o & & 80



V4L CONTENTS

Appendix 1: Nonuniqueness of invariant means. .. 91

Appendix 2: The Ryll-Nardzewski fixed point
theorem. . . .. ............... 97

Appendix 3: The equivalence of various types

of invariant means (another viewpoint) 101

References. . . . . . .. i i i it e e 103



7369140

SECTION 1

INVARIANT MEANS ON DISCRETE GROUPS
AND SEMIGROUPS

§1.1. MEANS AND INVARIANT MEANS
Let G be any set and X a closed subspace of B(&), the

space of all bounded complex-valued functions on G equipped

with the sup norm ||f||.. Assume X includes =ll constant func-

tions and is also closed under complex conjugation. Then a

linear functional m on X is a mean if

(1) m(f) = m(f) all feX.

(2) inf{f(2))} < m(f) < supif(z)} for all real-valued
felX.

The second condition is equivalent to

29 m(f) 20 if f >0, and m(1) = 1.

Thus (2) insures that m(1) = 1 and |m| = 1 for any mean.
The means on X form a weak*-compact convex set ¥ in X*.
If 21(@) is the space of all bounded discrete measures on G
with total variation norm, then B(G) = (?,1)*; obviously every
non-negative measure p ¢ £1 with ||p|| = 1 gives a mean on X:
my(f) = <pf> and these form a convex subset X; c X, the
set of discrete means on X. Furthermore, every mean m on S
is the weak * limit of some net of discrete means; otherwise the
Hahn-Banach theorem (as in [18] V. 2.10) insures we can find
a 6 > 0 and some f ¢ X such that Re (m(f)) > & + Re (m’(f))
for all discrete means m” ¢ X ;. But since Xj includes all

1




2 INVARIANT MEANS ON TOPOLOGICAL GROUPS

point masses, and Re (m(f)) = m(Ref), we see that
m(Ref) > supim’(Ref): m” ¢ 2} > sup{Ref(2): =z ¢ G}

which contradicts the definition of m being a mean. A similar
argument applies to show density of the finite means: Zﬁn’
those arising from measures which are finite sums of point
masses.

If G is a group and if the function space X is left invari-
ant, so f ¢ X —> _f ¢ X, where _f(¢) = f(a~1¢), then a
mean m is left invariant (m a LIM) if

(3) m(,f) = m(f) all z ¢ @G, all feX.

Likewise we say m is a right invariant mean if m(f,) = m(f)
for all # ¢ G, where we define f (¢) = f(¢2), and we define
two-sided invariance in the usual way, assuming of course X
is invariant under right and left translations.

There is an interesting duality between right and left in-
variant means if G is a group. For f ¢ X define f () = f(w_l).
In many cases of interest X = X ; in any event we have:

Lemma 1.1.1. If G is a group, there is a left invariant mean
on X <> there is a right invariant mean on X .

Proof. Given left invariant mean m on X, define m on X~ so
m(f) = m(f). It is easily verified that

(Mg = G

(1) ; : : : :
If G is a semigroup there is a slightly different notion of left

translation: Lgf(¢) = f(st). If X is left invariant, in the sense that
feX =>Lgfe X, and if @ is actually a group, it is also left in-
variant in the above sense because G = G~l. For functorial rea-
sons we take the above definition of ,f when @ is a group: this
way the action of ¢ on X becomes a group representation instead
of an anti-representation
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n((f7),) = m(,1)7) = m(,f) = m(f) = m(f") -

Ezample 1.1.2. For a semi-group, there is no analog of this
result: let G be a non-empty set with product zy = y for
z,y ¢ G. Then if f ¢ B(G) we have L_f(¢) = f(at) = f(?)
so every mean on B(G) is left-invariant. But 7 (¢) = f(¢2) =
f(z)-1 soif m is a right invariant mean: m(f) = m(f,) =
m(f(z)-1) = f(z) for all z ¢ G; if G has more than one ele-
ment, this is clearly impossible.

In many cases existence of left and right invariant means my
and m, insures existence of a two-sided invariant mean m .
The general idea of the proof, which makes sense if X = B(G)
for example, is to take f ¢ X, define F (2) = <my, f, >, and
set m(f) = m(F). It is readily verified that m is two-sided
invariant, which proves:

Lemma 1.1.3. If G is a semigroup with a left invariant mean
and a right invariant mean on X = B(G), then there exists a
two-sided invariant mean on X.

However, this construction does not always make sense,
for if my and m, are invariant means on X = CB(G): the con-
tinuous bounded functions on a topological group &, then there
is no assurance that f ¢ CB(G) => F(z) = <my, f,> is in
CB(G). On the other hand if X is a space of suitably uniform-
ly continuous functions on @&, there is some hope of making

this construction work. A few constructions for two-sided in-
variant means are discussed in the introductory section of [36].

Our main interest is in left and right invariant means on
groups and for applications it is only important to know wheth-
er there is at least one such invariant mean on X; the unique-
ness of such means is not relevant. In view of the duality ex-
hibited in 1.1.1, we shall generally discuss left invariant
means when dealing with groups. It is fortunate that unique-



+ INVARIANT MEANS ON TOPOLOGICAL GROUPS

ness of invariant means is not important in applications be-
cause they are usually not unique. If X = B(G) and G is a
finite group, or if X is a reasonable space of continuous func-
tions and G is a compact group, then the normalized Haar
measure on G gives a left invariant mean (LIM) on X and it
is easily seen that this is the only LIM on X. The question
of uniqueness has received a great deal of study; see Day [8],
sections 6—7, and also Hewitt-Ross [34], section 17.21. Some
recent results, especially those in Granirer [26], allow us to
prove the following definitive result.

Theorem 1.1.5. Let G be any discrete group which admits a
LIM on B(G). Then B(G) has a unique LIM <=> @ is finite.

We prove this in Appendix 1. The situation is incompletely
understood for invariant means on spaces of continuous func-
tions on a non-discrete topological group, cf.[27]. In 2.4, once
we have developed techniques for constructing invariant means,
we shall give some direct constructions of distinct invariant
means (the methods of Appendix 1 are probabilistic).

§1.2 CONSTRUCTION OF INVARIANT MEANS

A discrete semigroup G is left (right) amenable if there
is a left (right) invariant mean on X = B(G); if G is a group
these conditions are the same and we say that G is amenable.
Our first problem is to find reasonable conditions on G which
enable us (modulo the Hahn-Banach Theorem) to construct in-
variant means on B(G). Dixmier [11] shows, following ideas
which first appear in von Neumann [72], that existence of a
LIM on B(G) is equivalent to the following property of G .

(D) If {fy,...,fy} are real-valued functions in B(@) and
if {z,,...,2y} € G then:

) N
lnf'{.E1 (f; —Lwifi)f =1
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Let X be the closed (real) subspace generated by {f- L f:
2 ¢ @, f real-valued}. If m is a LIM on B(&) it must annihi-
late X, so 0 = m(¢) > inf(¢), all ¢ ¢ X. Conversely if
inf(¢) < 0 for all ¢ ¢ X then in B(@), the real-valued bound-
ed functions, consider K = {¢ ¢ B(&): inf(¢) > 0}. This open
convex set is disjoint from the subspace X so by one form of
Hahn-Banach there is a bounded linear functional m on B(G)
such that m(X) = 0, m(f) > 0 for all f ¢ K By scaling we
can arrange that m(1) = 1; thus m is a LIM on B(G). Extend
it to a LIM on B(G@) by taking @ (f+4g) = m(f) + 7 -m(g).

There are obvious right-handed and two-sided versions of
this result, whose proofs we omit. Using this criterion we
prove a basic existence theorem (following [34]; there is a gap

in the proof which appears in [11]).

Theorem 1.2.1. There is an invariant measure on B(G) for any

abelian semigroup @.

Proof. Let {f(,...,fy} C B(G) and {z,...,zy} C G be given.
Write Ap ={A{s- Ay): Ay integers, 1 < Ay < plforp =1,<2,...,
so that A has cardinality |Ap| - oY, and define r(\) = 271 -

A
zy Ye@. In any sum of the form

S{f,(HN) = filay rO): A € A}

all terms cancel except possibly those £,(r(A)) with A, = 1
and those f,(z, -7(\)) with A, = p (there are only 2p"~1
such A in A, for each k). But if ¢(2) = Si_,£,(0)~f,(z,0)
and m = max{[]fkuw: k=1,2,...N}, then
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|A, | inflg(2): ¢ € @} = PVinfle} < 2 X € Ap}
N

S S0 ~fle 0 A € ALY
1

IN
YER

1 22V =1 foll <2mNp¥-1  p=12...

k
Thus inf{p} < 0 as required. Q.E.D.

If G is a finite group, then there is a (unique) LIM on B(&)
corresponding to Haar measure, but if @ is a finite semigroup
there may not be any LIM on B(@) as 1.1.2 shows. Rosen [67]
has characterized the finite semigroups which are two-sided

amenable as follows—we will not prove this here.

Proposition 1.2.2. A finite semigroup G has a two-sided in-
variant mean on B(@) <=> @ has unique minimal left and
right ideals; then these minimal ideals coincide in a two-
sided ideal which is a finite group G*. The (unique) invari-

ant mean m on B(G@) is given by

m(f) = L S{f@): ¢t e G%

o

where |G*| = cardinality of G*.

Ezample 1.2.3. If m is a left invariant mean on B(G) we may
define a left-invariant finitely additive measure p on the col-
lection Q(G) of all subsets: p(E) = m(y ), where yp =
characteristic function of £ ¢ Q(@). If @ is the free groupon
two generators a, 6 such a measure cannot exist, thus @ is not
amenable: divide @ into disjoint sets {H: 7 ¢ Z} with z ¢

H, <=> when expressed as a reduced word, z = a’b"1a"? ...



