

Electromagnetic Transients in Power Systems Second Edition

Pritindra Chowdhuri

Electromagnetic Transients In Power Systems - Second Edition

Pritindra Chowdhuri

Center for Electric Power Tennessee Technological University Cookeville TN 38505 U.S.A.

RESEARCH STUDIES PRESS LTD.Baldock, Hertfordshire, England

A Partner Imprint with the Institute of Physics Publishing

RESEARCH STUDIES PRESS LTD.

16 Coach House Cloisters, 10 Hitchin Street, Baldock, Hertfordshire, SG7 6AE, England Tel: + 44 (0)1462 895060 Fax: + 44 (0)1462 892546; e-mail: rsp@rspltd.demon.co.uk www.research-studies-press.co.uk

and

Institute of Physics Publishing, Suite 929, The Public Ledger Building, 150 South Independence Mall West, Philadelphia, PA 19106, USA

Copyright © 2004, by Research Studies Press Ltd. Research Studies Press Ltd. is a partner imprint with the Institute of Physics Publishing

All rights reserved.

No part of this book may be reproduced by any means, nor transmitted, nor translated into a machine language without the written permission of the publisher.

Marketing:

Institute of Physics Publishing, Dirac House, Temple Back, Bristol, BS1 6BE, England www.bookmarkphysics.iop.org

Distribution:

NORTH AMERICA

AIDC, 50 Winter Sport Lane, PO Box 20, Williston, VT 05495-0020, USA Tel: 1-800 632 0880 or outside USA 1-802 862 0095, Fax: 802 864 7626, E-mail: orders@aidevt.com

UK AND THE REST OF WORLD

Marston Book Services Ltd, P.O. Box 269, Abingdon, Oxfordshire, OX14 4YN, England Tel: + 44 (0)1235 465500 Fax: + 44 (0)1235 465555 E-mail: direct.order@marston.co.uk

Library of Congress Cataloging-in-Publication Data

Chowdhuri, Pritindra, 1927-

Electromagnetic transients in power systems / Pritindra Chowdhuri. -- 2nd ed.

p. cm. -- (High voltage power transmission series; 3)

Includes bibliographical references and index.

ISBN 0-86380-280-X

1. Transients (Electricity) 2. Electric power systems--Protection. 1. Title. II. Series: Electronic & electrical engineering research studies. High-voltage power transmission series; 3.

TK3226.C543 2004

621.319'21--dc22

2004026582

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library.

ISBN 0 86380 280 X

Printed in Great Britain by Lightning Source Ltd.

Cover artwork by A3 grafix ltd.

Electromagnetic Transients In Power Systems - Second Edition

HIGH VOLTAGE POWER TRANSMISSION SERIES

Series Editor:

Dr V. T Morgan

CSIRO Division of Applied Physics, Australia

- 1 Electromagnetic Transients in Power Systems
 Pritindra Chowdhuri
- Corona Performance of High-Volatge Transmission LinesP. Sarma Maruvada
- 3 Electromagnetic Transients in Power Systems Second Edition **Pritindra Chowdhuri**
- 4* Planning and Pylons: Addressing Local Concerns about High Voltage Electricity Installations
 Stephen Jay

* Forthcoming

In loving memory of my parents
AHINDRA and SUDHIRA
CHOWDHURI
who
nurtured and inspired me

Preface to the Second Edition

The contents of the first edition have been revised and several chapters have been extensively enlarged to reflect the new developments in electromagnetic transients. A new chapter (Chapter 12 – Dynamic Overvoltages) has been added in the second edition of the book.

I have freely drawn upon the experience and wisdom of others who have worked in the field of electromagnetic transients. They have willingly permitted me to reproduce some of their previous work. The book is richer because of them.

I am very grateful for the comments and critique of readers from around the world. I am especially grateful to my colleagues in the IEEE and also to my own students who have acted as my mentors, teachers and above all friends. It has been a great learning experience.

I thank Dr. S. Munukutla, Director of the Center for Electric Power, for making available the Center facilities. I also thank Mr. T. Greenway and Ms. L. Lee for their help with word processing. I appreciate the patience of Mr. G. Martinelli of Research Studies Press while I was happily revising the book.

P. Chowdhuri Cookeville, Tennessee, U.S.A. August 2004

Editorial Foreword to the First Edition

This excellent monograph on Electromagnetic Transients in Power Systems by Professor Pritindra Chowdhuri is the first book to be published in a new series on High-Voltage Power Transmission. The electricity supply industry is undergoing rapid change, with increasing pressure for the fullest possible utilisation of transmission and distribution assets. Hence, it is essential that the best technical and economic solutions are applied to such problems as overvoltages, power losses, fault currents, protection, electromagnetic interference, current-carrying capacities, insulation failures, excessive sags, corrosion, fatigue, wind-induced oscillations and constraints on line planning.

It is intended that this series will address the electrical, mechanical, civil, environmental and planning aspects of high-voltage power transmission, with authoritative reviews of recent research and developments by experts in their fields.

Professor Vincent T. Morgan Sydney, Australia June 1996

Preface to the First Edition

This book has been in preparation during the last 10 years when I joined the Center for Electric Power at Tennessee Technological University. It is the outgrowth of the notes I prepared for two graduate courses on electromagnetic transients in power systems. I felt that graduate courses on this topic should deal not only with the basic mathematical and physical principles of electromagnetic transients and their effects on power systems but should also address the latest problems on electromagnetic transients which the electric power industry is trying to solve. Power-system grounding, lightning-induced voltages on overhead power lines, protection of substations and transients in low-voltage systems with emphasis on power-electronic systems are very important topics today. Although a wealth of knowledge exists on these topics in the published literature, there is no single depository where information on these topics can be found. Separate chapters have been devoted to these topics in this book. Each chapter contains extensive references for those who want to pursue the topic further.

I have drawn heavily on my own involvement during the last 40 years with electromagnetic transients in both high- and low-voltage electrical systems. I have also been benefitted by the knowledge and wisdom of my colleagues, particularly through my association with the Institute of Electrical and Electronics Engineers (IEEE). I hope that this book will be useful not only to the graduate students but also to the specialists who are practicing in this field.

I wish to thank the IEEE and the Electric Power Research Institute (EPRI) for permitting me to reproduce from their publications. I wish to thank ABB Power T&D Company, Cooper Power Systems, General Electric Company, Harris Corporation and Ohio Brass Company for making available to me information on surge protectors. Dr. K. L. Cummins of Global Atmospherics, Professor K. Feser of Stuttgart University and Dr. D. R. MacGorman of University of Oklahoma were very kind to permit me to reproduce several figures from their publications. My special thanks go to Mr. J. Autery, Dixons Mills, Alabama, for providing the striking photo of lightning flash which is printed on the cover of the book with his permission.

I am grateful to Dr. C. E. Hickman, Director of the Center for Electric Power for making available the Center facilities and his constant encouragement for writing this book. I acknowledge Mr. K. A. Jones, R & D Engineer of the Center for scanning many of the figures in the book, and Ms. Helen Knott for help with word processing. I am thankful to my students for their valuable suggestions and help in weeding out errors in the manuscript. I am indebted to my daughter, Naomi Tyler for reading and correcting the manuscript in spite of her own heavy load in her Ph.D. program. My appreciation and gratitude go to my wife Sharon, for literally living through the vow, 'for better and for worse' that she once took and for her encouragement, understanding and patience in letting me wander into this venture.

Last but not the least, I am indebted to my Series editor, Dr. V. T. Morgan and to my publisher, Mrs. V. A. Wallace for their extraordinary patience and encouragement.

Pritindra Chowdhuri Cookeville, Tennessee, U.S.A. July 1996

TABLE OF CONTENTS

1.	INTRODUCTION	1
1.1	Sources of Electrical Transients	1
1.2	Basic Mathematical Concepts for Transient Analysis	4
1.2	1.2.1 Laplace transform	4
	1.2.2 Representation of transient waveshape	4
	1.2.3 Superposition principle - Duhamel integral	6
1.3	References	
	ems	
11001		
2.	WAVE PROPAGATION	11
2.1	Wave Equation	11
2.2	Velocity of Traveling Waves	14
2.3	Relation between the Voltage and Current Waves	14
2.4	Line of Finite Length: Point of Discontinuity	16
2.5	Examples of Line Terminations	18
	2.5.1 Line terminated by its surge impedance: R = Z	18
	2.5.2 Open-circuited line	18
	2.5.3 Short-circuited line	19
2.6	Line Terminated by a Complex Impedance	19
2.7	Application of Thevenin's Theorem	20
2.8	General Transition Point	22
2.9	Multiple Reflections: Lattice Diagram	24
2.10	Examples of Multiple Reflections	26
	2.10.1 Charging an open-circuited line from a dc voltage source	26
	2.10.2 Short-circuited line suddenly switched to a dc voltage source	27
2.11	References	28
Prob	lems	29
3.	WAVE PROPAGATION ON MULTICONDUCTOR SYSTEMS	33
3.	WAVE I ROLAGATION ON MODIFICONDUCTOR STOTEMS	
3.1	Group of Conductors: Coefficients of	22
	Potential, Capacitance and Induction	33
3.2	Multiconductor Line above Earth	34
3.3	Wave Equations	20
3.4	General Solution of the Wave Equation	رد ۱۸
3 5	Modal Analysis	4U

3.6	A Simple Example of Modal Analysis	42
3.7	Physical Significance of Modal Analysis	43
3.8	Transition Points in Multiconductor Systems	45
	3.8.1 Conductors in parallel	45
	3.8.2 Second conductor uniformly grounded	47
	3.8.3 Second conductor of finite length and open-circuited	48
	3.8.4 Second conductor of finite length and shorted to ground	51
	3.8.5 Conditions at the beginning of a parallel	52
3.9	Effects of Dissipation on Wave Propagation	53
	3.9.1 Effect of finite soil conductivity	53
	3.9.2 Modal analysis	54
	3.9.3 Three-phase lines	56
	3.9.4 Ground impedance	59
	3.9.5 Effect of impulse corona	61
3.10	References	67
Proble	ems	69
4.	LIGHTNING PHENOMENA	71
4.1	Formation of a Thundercloud	71
4.2	Mechanism of the Lightning Flash	74
	4.2.1 Pilot streamer and stepped leader	74
	4.2.2 Ground streamer and return stroke	75
	4.2.3 Subsequent strokes	77
	4.2.4 Other forms of lightning discharges	77
4.3	Lightning Flash Parameters	78
	4.3.1 Frequency of occurrence	78
	4.3.2 Magnitude of return-stroke current	83
	4.3.3 Waveshape of return-stroke current	87
	4.3.4 Charge distribution along a stepped leader	93
	4.3.5 Velocity of stroke propagation	94
4.4	Protective Shadow of a Structure	96
4.5	Striking Distance	97
4.6	Electrogeometric Model for Lightning Strike	
	to an Overhead Line	
4.7	Concluding Remarks	107
4.8	References	
Proble	ems	114
5.	GROUNDING FOR PROTECTION AGAINST LIGHTNING	115
5.1	Steady-State Tower-Footing Resistance	115
5.2	Dynamic Tower-Footing Resistance	118
	5.2.1 Concentrated grounding system	119
	5.2.2 Extended grounding system	100

5.3	Substation Grounding Grid	129
5.4	References	132
Probl	ems	134
6.	DIRECT LIGHTNING STROKES TO OVERHEAD LINES	
	WITHOUT SHIELD WIRES	135
6.1		
6.2	Introduction	135
6.3	Stroke to Line	137
6.4	Stroke to Tower	138
6.5	Estimation of Attractive Area by Electrogeometric Model	143
6.6	Tower Surge Impedance Estimation of Outage Rate by Electrogeometric Model	145
6.7	References	146
	References	149
11001	VIII.5	151
7.	DIRECT LIGHTNING STROKES TO OVERHEAD LINES	
	WITH SHIELD WIRES	153
7.1	Introduction	
7.2	Introduction	153
7.3	Stroke to Shield Wire	154
7.4	Shielding of Overhead Lines against Direct Strokes	158
7.5	Electrogeometric Model of Shielding	162
7.6	Placement of Shield Wires	164
7.7	Estimation of Outage Rate	169
7.8	References	175
	ems	176
	VII.5	1//
8.	RESPONSE OF OVERHEAD LINES TO	
	NEARBY LIGHTNING STROKES	179
8.1	Review of Research on Lightning-Induced Voltages	170
8.2	Mechanism of Voltage Induction	105
8.3	Basic Assumptions	186
8.4	Doubly Infinite Single-Conductor Line	190
	8.4.1 Inducing voltage: rectangular return-stroke current	190
	8.4.2 Induced voltage: rectangular return-stroke current	192
9-1 89	8.4.3 Parametric effects on the induced voltage	195
8.5	Multiconductor Overhead Lines	196
	8.5.1 Induced voltage with shield wires	200
0.6	8.5.2 An example	202
8.6	Lightning-Induced Voltages on Overhead Lines	
	of Finite Length	204
	of finite length	00-
	of finite length	205

8.7	Estimation of Flashover Rates by Nearby Lightning Strokes	206
8.8	Effects of Induction for Direct Strokes	212
8.9	Total Outage Rate of an Overhead Power Line	217
8.10	References	219
Appe	ndix 8A: Deduction of Inducing Voltage	224
Appe	ndix 8B: Induced Voltage Caused by Return-Stroke Current	
	of Arbitrary Waveshape	228
9.	FUNDAMENTAL CONCEPTS OF SWITCHING TRANSI	ENTS.233
9.1	Introduction	222
9.1	Introduction	233
9.3	Examples of Simple Switching	234
7.5	9.3.1 Closing of a switch	225
	9.3.2 Opening of a switch	233
9.4	Circuit Breaker Recovery Voltage	240
9.5	References	243
	ems	243
10.	SWITCHING SURGE PHENOMENA	247
10.1	Current Suppression or Chopping	247
	10.1.1 Current chopping in dc systems	247
	10.1.2 Current chopping in ac systems	250
10.2	Compound Transients	251
10.3	Switching Surges in Capacitive Circuits	258
10.4	Switching Surges in Distributed-Constant Systems	259
10.5	References	
Probl	ems	262
11.	SYSTEM PERFORMANCE UNDER SWITCHING SURG	ES265
11.1	Introduction	265
11.2	Physical Mechanism of Air Breakdown	
11.3	Critical Flashover Voltage of External Insulation	200
	under Switching Surges	268
	11.3.1 Gap factor method	
	11.3.2 Leader progression method	271
11.4	Effects of Atmospheric Conditions on Switching-Surge CFO	276
11.5	Estimation of the Performance of External Insulation	
	under Switching Surges	277
11.6	Phase-to-Phase Switching Surges	281
	11.6.1 Critical flashover voltage under phase-to-phase	*
	switching surge	282
	11.6.2 Estimation of flashover rate caused by	
	phase-to-phase switching surge	
11.7	Performance of Internal Insulation under Switching Surges	286