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HOW TO LOOK AT THE ILLUSTRATIONS

¢ Color is used to identify, associate, and relate items
dealt with in various contexts. In drawings dealing
with orbital theory, for instance, each category of or-
bital (s, 2p, sp, d) has its own identifying color. These
colors appear not only in three-dimensional pictorial
depictions of the orbitals but also in the diagrams and
charts that deal with them on an abstract level.

¢ Elements by themselves or as components of
ball-and-stick and space-filling molecular models are
identified by conventional colors throughout the
book. Thus hydrogen is white, oxygen red, chlorine
green, sulfur yellow, and so on.

® Various rays such as infrared rays, alpha, beta and
gamma rays, ultraviolet rays and x-rays are shown in
their characteristic colors. This is the case in illustra-
tions of laboratory equipment generating these rays as
well as in charts and diagrams expressing data about
them.

® The relative sizes and configurations of the various
orbitals are drawn to scale in accordance with their
known mathematical data to ensure an authentic and
consistent appearance.

¢ The space-filling molecular models are drawn to
scale. Thus the relative diameters of the atomic
elements comprising the molecules reflect their known
mathematical data. In figures of the water molecule,
for instance, the diameters of the component hydro-
gen and oxygen atoms are drawn in the ratio of 0.37
to 0.66.

® Figures of ball-and-stick and space-filling models
show the bonding angles drawn to accurately reflect
their known divergences. Thus in the water molecule
the angle between the hydrogen atoms is shown at a
true 104°5’. The result is an authentic depiction and
not a casual impression.

® Three-dimensional formula structures are drawn
to emphasize their spatial geometry with clarity.

® Laboratory equipment (flasks, beakers, bunsen
burners, etc.) has been drawn with reference to lab
equipment catalogues to ensure accuracy in appearance.

® (Classic experiments are depicted with careful
attention to key aspects concerning the physical equip-
ment used and its set-up.

¢ Crystal molecular structures are drawn to ensure
that the positions of the atoms in space relative to
each other and thus the geometry of the structures is
unequivocally clear.

® Various items that repeat throughout the book are
identified by their own unique colors: energy level
diagrams; various diagrams and periodic tables that
deal with the concept of the states of matter wherein
gas, solid and liquid each have their own color; orbit
diagrams; diagrams which deal with the concepts of
metals, nonmetals and metalloids; symbols for the
concepts of attraction and repulsion; and so on.



TO THE INSTRUCTOR

Those of us who teach chemistry argue about what
topics should be emphasized and about the best order
for presenting these topics, but chemists at widely differ-
ing institutions are in remarkable agreement about the
material that should be covered in a given course.

This does not mean that the consensus is stable —
there is abundant evidence to show that it changes with
time. At one time, introductory chemistry courses fo-
cused on the preparation and properties of elements and
compounds. More than half of a typical textbook at that
time was devoted to topics such as the chemistry of the
halogens, the Frasch process for mining sulfur, the prep-
aration of phosphine, the manufacture of nitric acid, the
production of pig iron in blast furnaces, and so on.

Courses based on these texts were inevitably dis-
placed by those that focused on the principles of chemis-
try. These courses introduced discussions of the photo-
electric effect, the Schrédinger model of the hydrogen
atom, wave-particle duality, molecular orbitals, en-
tropy, and free energy. They spent less time talking
about the chemistry of the transition metals, and more
time using atomic orbitals to explain this chemistry.

The title of this text— Chemistry: An Experimental
Science—reflects our beliefs about the direction in
which general chemistry courses should evolve. We
agree with the Committee on Professional Training of
the American Chemical Society, which recommends
putting the “‘chemistry” back into introductory chemis-
try courses. But to us, this means more than just adding
additional inorganic chemistry. It means returning to an
experimental perspective, in which observations are
made before they are explained.

Many texts, for example, place the descriptive chem-
istry at the end. This assumes that we have to introduce
the students to all of the principles of chemistry — from
the structure of the atom, to equilibria and free energy
—before we can talk about the chemistry of the ele-
ments. We think this is a mistake, and have integrated
the descriptive chemistry throughout the book. As much
as possible, we start by noting what happens when chemi-

cal systems are observed. Once the observations are
made, we then try to develop explanations for this be-
havior.

As early as Chapter 2, we describe the differences
between the chemical and physical properties of metals
and nonmetals and between ionic and covalent com-
pounds. When the periodic properties of the elements
are discussed in Chapter 6, they are immediately used to
explain the existence of semimetals and to discuss the
reactivity of the active metals. The chemistry of the
main-group metals is introduced in Chapter 7 as a basis
for discussions of oxidation-reduction reactions and
ionic compounds, rather than vice versa. Ionic bonds are
then contrasted with covalent bonds, thermochemistry
is introduced, and the chemistry of the nonmetals is de-
scribed in Chapter 10. Chapter 11 then focuses on the
qualitative chemistry of acids, bases, and salts.

To us, descriptive chemistry is more than inorganic
reaction chemistry. It includes an understanding of the
chemistry of aqueous solutions, particularly acid - base,
solubility, and complex-ion equilibria. We also believe
that one of the best ways of learning this chemistry is
through the qualitative analysis scheme. We have there-
fore included a truncated ‘‘qual” scheme that can be
covered in four or perhaps five three-hour laboratory
periods.

Most general chemistry texts introduce kinetics be-
fore equilibria, because we can explain why reactions
come to equilibrium from a kinetic perspective. But you
don’t need to understand first-order and second-order
reactions, rate constants, instantaneous rates of reac-
tion, reaction mechanisms, activation energies, and so
on, to understand equilibrium. We therefore begin the
equilibrium chapters with a discussion of the collision-
theory model of chemical reactions. The various tricks
that are needed to handle equilibrium calculations are
then introduced in terms of relatively simple, gas-phase
reactions. (We find that when students understand how
these techniques can be applied to reactions in which the
solvent plays no role, they are much better at reactions in

vii
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aqueous solution.) In a later chapter, we then return to
chemical kinetics — after the student has achieved some
facility with simpler calculations.

Our belief that observations should precede explana-
tions also influenced our placement of the chapters on
electrochemistry and thermodynamics. Many texts de-
velop the concept of free energy and then relate it to
electrochemical cells. We start with the system that can
be observed —the electrochemical cell —and then de-
velop the theoretical explanation for this behavior.

Many instructors who adopt this text will disagree
with some of our ideas about order. We have therefore
tried to write each section so that it could stand alone.
The chapters on gases and thermochemistry, for exam-
ple, can be taught at almost any time after the basics of
stoichiometry have been introduced. Chapter 6 (the pe-
riodic table) builds on the discussion of the structure of
the atom in Chapter 5. However, Chapter 7, on main-
group metals and their salts, can be grouped with the
material in Chapter 10 on nonmetals at almost any time
during the year.

The chapter on electrochemistry builds on the pre-
ceding discussion of oxidation-reduction reactions, but
these two chapters can be covered at essentially any
point in the second-half of the course. Chapters 20
through 25, on thermodynamics, kinetics, transition-
metal chemistry, nuclear chemistry, organic chemistry,

TO THE STUDENT

and polymer chemistry were written so that they could
be used at any point, in essentially any order.
The following supplements to this textbook are avail-

able:

1. SOLUTIONS MANUAL: Contains solutions to all
end-of-chapter problems.

2. STUDY GUIDE: Contains statements of objectives, a
review of significant topics, additional worked exam-
ples, self-test questions and problems, and a list of new
terms for each chapter.

3. TRANSPARENCIES: A package of full-color trans-
parencies that reproduce key illustrations from the
text.

4. INSTRUCTOR’S MANUAL: Discusses the objec-
tives and rationale for each chapter, possible course
outlines, and suggestions for exams.

5. TEST BANK: A printed test bank with answers that
includes a variety of test formats.

6. MICROTEST: A computerized version of the test
bank available for use with IBM PC or Apple Macin-
tosh computers.

7. LECTURE DEMONSTRATION MANUAL: Con-
tains short, simple lecture demonstrations keyed to
the text material.

Students enroll in general chemistry courses for many
reasons. For some, it is a direct result of the major they
select, because the language and critical thinking skills
chemists use has been judged to be a valuable tool for
success in that field. Some students choose chemistry to
fulfill a science elective; others take it because it is a
required course for professional schools in medicine,
dentistry, or veterinary medicine. Some of you might
even be considering a career in chemistry.

No matter why you are taking general chemistry, this
course is designed to meet some of the following objec-
tives: to introduce you to some of the language that
chemists use to describe the world around us, a language
that has been adopted by professionals in such diverse
fields as political science and astronomy; to introduce
you to concepts and skills that are needed in later courses
in your major; to foster problem solving skills that can be
transferred to your profession or to life in general.

Developing problem solving skills is such an impor-

tant component of chemistry courses that it is useful to
summarize some of the differences research has found
between good and poor problem solvers.

Good Problem Solvers:

1. Believe they can solve almost any problem if they
work long enough.

2. Are persistent; they don’t give up easily.

3. Read carefully, and reread a problem, until they un-
derstand what information is given and what they are
asked to solve for.

4. Break problems into small steps, which they solve one
at a time.

5. Organize their work so that don’t lose sight of what
they’ve accomplished, and can follow the steps
they’ve taken so far.

6. Check their work, not only at the end of the problem
but at various points along the way.



7. Build models, or representations, of the problem,
which can take the form of a list of relevant informa-
tion, a picture of the system under consideration, or a
concrete example.

8. Try to solve a simpler, related problem when faced
with a problem they can’t solve.

9. Guess and test; they try out several approaches to a
problem until they are successful.

Poor Problem Solvers:

1. Don’t believe they can solve problems; they believe
that you either know the answer or you don't.

2. Give up easily if they don’t seem to get the answer.

3. Are careless readers, who often misread what is writ-
ten. They tend to jump into the problem before they
understand what it asks for.

4. Seldom check their work to see if it makes sense.

- Organize their work carelessly.

6. Have only one approach to a given problem. When
they can’t recall a formula, for example, they give up.

&3

This text contains worked examples designed to help
you: (1) determine what the problem asks for, (2) select
relevant information, (3) keep track of this information,
(4) check the results of calculations, (5) work problems
that contain too much information, (6) work problems
that don’t seem to contain enough information, (7) work
backwards, and (8) make assumptions or approxima-
tions that turn complex problems into simpler ones.

It might be useful to distinguish between two closely
related concepts: problemsand exercises. Hayes defined a
problem as follows.

Whenever there is a gap between where you are now
and where you want to be, and you don’t know how to
find a way to cross that gap, you have a problem.!

If you know what to do when you read a question, it’s an
exercise not a problem. Status as a problem is not an
innate characteristic of a question, it is a subtle interac-
tion between the question and the individual trying to
answer the question. It reflects experience with that type
of question more than intellectual ability.

When you go to class, you may find that your instruc-
tor has developed an impressive repertoire of techniques
that can be used to turn problems into exercises. We like
to call these techniques “algorithms”’, which are defined
as “rules for calculating something, especially by ma-

' J. Hayes, “The Complete Problem Solver”, Franklin Institute
Press, Philadelphia, PA 1980,
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chine.” Algorithms are useful for solving routine ques-
tions or exercises. In fact, the existence of an algorithm
constructed from prior experience may be what turns a
question from a problem into an exercise.

Students who have not built algorithms for at least
some of the steps in a problem will have difficulty solving
the problem. There is more to working problems, how-
ever, than applying algorithms in the correct order.
Problem solving has been defined as “What you do,
when you don’t know what to do.” By definition, there is
no clear cut answer to what you should do when faced
witha novel problem. We believe, however, that success-
ful problem solvers, when faced with a problem,

1. Read the problem.

2. Read the problem again.

3. Write down what they hope is the relevant informa-
tion.

- Read the problem again.

5. Draw a picture or make a list to help build a model,
or representation, of the problem.

. Try something.

. Try something else.

- See where this gets them.
9. Read the problem again.

10. Try something else.

11. See where that gets them.

12. Test an intermediate resul.

13. Repeat this process until they get an answer that
might be correct.

14. Test the answer to see if it makes sense.
15. Start over if they have to, celebrate if they don’t.

-
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We have two suggestions for improving your problem-
solving skills. First, recognize the importance of prac-
tice. The more problems you work, the better you will
become at solving problems. Second, recognize the im-
portance of working with other students. Take turns
working problems out loud, explaining each step in the
problem to the others in your group. While you do this,
they should listen carefully to make sure they under-
stand each step you take, to check each step to make sure
that you aren’t making any errors, to identify errors
when they perceive them (without giving any hints about
what they believe is the correct answer), and to insure
that you vocalize each of the major steps in the problem.
Research has shown that this approach can significantly
improve the problem solving skills of each member of
the group.
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2  CHAPTER 1 THE FUNDAMENTALS OF MEASUREMENT

A sample of the ore malachite
from the Campbell Cole Shaft in
Bisbee, Arizona.

Fire

Earth

FIG. 1.1 The ancient Greeks
assumed the world was com-
posed of four elements— fire,
air, earth, and water — that
differed in two properties— hot
versus cold and dry versus wet.

4.1 CHEMISTRY AS AN EXPERIMENTAL SCIENCE

Chemistry is easy to define:

Chemistry is the science that deals with the composition and properties of
substances and the reactions by which one substance is converted into an-

other.

But it is harder to appreciate what this definition means. It can be argued that th.e
purpose of this text is to provide the background necessary to fully understand this
definition and its implications.

One of the best ways of teaching a new word or concept is to provide both
examples and non-examples of the concept. Perhaps the best way to begin defining
chemistry is to provide you with examples of what it is not.

In 1921, a group from the American Museum of Natural History began excava-
tions at an archaeological site on Dragon-Bone Hill, near the town of Chou-k’ou-
tien (Zhoukoudian), 34 miles southwest of Beijing, China. Fossils found at this site
were assigned to a new species, Homo erectus pekinensis,commonly known as Peking
man. These excavations suggest that for at least 500,000 years, people have known
enough about the properties of stone to make tools, and they have beenable to take
advantage of the chemical reactions involved in combustion in order to cook food.
But even the most liberal interpretation would not allow us to call this chemistry,
because of the absence of any control over these reactions or processes.

The ability to control the transformation of one substance into another can be
traced back to the origin of two different technologies: brewing and metallurgy.
There is ample evidence that people have been brewing beer for at least 12,000
years, since the time when the first cereal grains were cultivated. Metallurgy, the
process of extracting metals from their ores, has been practiced for at least 6000
years, since copper was first produced by heating the ore malachite.

But brewing beer by burying barley until it germinates and then allowing the
barley to ferment in the open air was not chemistry. Nor was extracting copper
metal from one of its ores. People carried out both processes in the same fashion
time after time without any understanding of what was happening or why. Even the
discovery around 3500 B.c. that copper mixed with 10% to 12% tin gave a new
metal that was harder than copper, and yet easier to melt and cast, was not chemis-
try. The preparation of bronze was a major technical breakthrough in metallurgy,
but it did not provide people with an understanding of how to make other metals.

Between the sixth century B.c. and the third century B.c., the Greek philoso-
phers (literally, lovers of wisdom) tried to build a theoretical model for the behav-
ior of the natural world. They argued that the world was made up of four primary,
or elementary, substances: fire, air, earth, and water (see Figure 1.1). These sub-
stances differed in two properties: hot versus cold and dry versus wet.

Fire: hot and dry
Air: hot and wet
Earth: cold and dry
Water: cold and wet

Their model was able to explain some common observations. Water (cold and wet)
evaporates or turns into air (hot and wet) when it is heated. A piece of wood, which
contains a great deal of earth (cold and dry), bursts into flame (hot and dry) when it
is heated.

This model was the first step toward the goal of understanding the properties
and compositions of different substances and the reactions that convert one sub-



