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Computational Physics
This book describes computational methods used in theoretical physics with
emphasis on condensed matter applications.

Computational physics involves the use of computer calculations and simulations
to solve physical problems. Following an overview of the wide variety of topics and
algorithmic approaches studied in this book, the text explores quantum scattering
with a spherically symmetric potential as a typical example of a computational
physics problem. The next chapters concentrate on electronic structure calculations,
presenting the Hartree—Fock and density functional formalisms, and band structure
methods. Later chapters discuss molecular dynamics simulations and Monte Carlo
methods in classical and quantum physics, with applications to condensed matter
and particle field theories. Each chapter begins with an exposition of necessary
fundamentals, describes the formation of sample programs and ends with problems
addressing related analytical and numerical issues. Useful appendices on numerical
methods and random number generators are included and the book contains
extensive references.

Suitable for graduate students, this book bridges the gap between undergraduate-
level physics and computational research. It is also a valuable reference for
researchers in physics, chemistry, computer science, mathematics and biology.
Although not essential, some knowledge of numerical analysis would be helpful in
reading this book.

Jos THUSSEN did his physics degree at the University of Nijmegen in the
Netherlands. He then taught at secondary schools and developed educational
software for university physics courses in Nijmegen. In 1990, he obtained his Ph.D.
in statistical physics from the University of Nijmegen. He wrote his thesis on phase
transitions in the two-dimensional, frustrated XY model. After obtaining his Ph.D.,
he spent five years as a lecturer in Nijmegen. During this period he set up an under-
graduate course on computational physics, which formed the basis of the present
book. From the end of 1995 until September 1998 he was a lecturer at the University
of Cardiff, Wales. Since September 1998, he has been working on the application of
multigrid and parallelisation methods to semiconductor process simulation at the
DIMES Institute of the Delft University of Technology, in the Netherlands. His
current research interests include polycrystalline growth, polymer folding, and
electronic structure methods for large unit cells.



Preface

This is a book on computational methods used in theoretical physics research,
with an emphasis on condensed matter applications.

Computational physics is concerned with performing computer calcula-
tions and simulations for solving physical problems. Although computer
memory and processor performance have increased dramatically over the last
two decades, most physical problems are too complicated to be solved without
approximations to the physics, quite apart from the approximations inherent
in any numerical method. Therefore, most calculations done in computational
physics involve some degree of approximation. In this book, emphasis is on the
derivation of algorithms and the implementation of these: it is a book which
tells you how methods work, why they work, and what the approximations are.
It does not contain extensive discussions on results obtained for large classes
of different physical systems.

This book is not elementary: the reader should have a background in
basic undergraduate physics and in computing. Some background in numerical
analysis is also helpful. On the other hand, the topics discussed are not treated
in a comprehensive way; rather, this book hopefully bridges the gap between
more elementary texts! and specialised monographs and review papers on
the applications described. The fact that a wide range of topics is included has
the advantage that the many similarities in the methods used in seemingly very
different fields could be highlighted. Many important topics and applications
are however not considered in this book — the material presented obviously
reflects my own expertise and interest.

I hope that this book will be useful as a source for intermediate and
advanced courses on the subject. I furthermore hope that it will be helpful for
graduates and researchers who want to increase their knowledge of the field.

Some variation in the degree of difficulty is inherent to the topics addressed
in this book. For example, in molecular dynamics, the equations of motion
of a collection of particles are solved numerically, and as such it is a rather
elementary subject. However, a careful analysis of the integration algorithms
used, the problem of performing these simulations in different statistical
ensembles, and the problem of treating long range forces with periodic
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xii Preface

boundary conditions, are much more difficult. Therefore, secticns addressing
advanced material are marked with an asterisk (*) — they can be skipped at
first reading. Also, extensive theoretical derivations are sometimes moved to
sections with asterisks, so that the reader who wants to write programs rather
than go into the theory may use the results, taking the derivations for granted.

Aside from theoretical sections, implementations of algorithms are
discussed, often in a step-by-step fashion, so that the reader can program the
algorithms him- or herself. Suggestions for checking the program are included.
In the exercises after each chapter, additional suggestions for programs are
given, but there are also exercises in which the computer is not used. The
computer exercises are marked by the symbol [C]; if the exercise is divided up
into parts, this sign occurs before the parts in which a computer program is to
be written (a problem marked with [C] may contain major parts which are to
be done analytically). The programs are not easy to write — most of them took
me a long time to complete! Some data-files and numerical routines can be
found on http://ectm.et.tudelft.nl/www/homepage/Thijssen/.

The first person who suggested that I should write this book was Aloysio
Janner. Thanks to the support and enthusiasm of my colleague and friend John
Inglesfield in Nijmegen, I then started writing a proposal containing a draft
of the first hundred pages. After we both moved to the University of Cardiff
(UK), he also checked many chapters with painstaking precision, correcting the
numerous errors, both in the physics and in the English; without his support,
this book would probably never have been completed.

Bill Smith, from Daresbury Laboratories (UK), has checked the chapters
on classical many particle systems and Prof. Konrad Singer those on quantum
simulation methods. Simon Hands from the University of Swansea (UK) has
read the chapter on lattice field theories, and Hubert Knops (University of
Nijmegen, The Netherlands) those on statistical mechanics and transfer matrix
calculations. Maziar Nekovee (Imperial College, London, UK) commented
on the chapter on quantum Monte Carlo methods. I am very grateful for the
numerous suggestions and corrections from them all. I am also indebted to
Paul Hayman for helping me correcting the final version of the manuscript.

In writing this book, I have discovered that the acknowledgements to
the author’s family, often expressed in an apologetic tone as a result of the
disruption caused by the writing process to family life, are too real to be
disqualified as a cliché. My sons Maurice, Boudewijn and Arthur have in turn
disrupted the process of writing in the most pleasant way possible, regularly
asking me to show growing trees or fireworks on the screen of my PC, instead of
the dull black-on-white text windows. Boudewijn and Maurice’s professional
imitation of their dad, tappi\ng on the keyboard, and sideways reading formulae,
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is promising for the future.

It is to my wife Ellen that I dedicate this book, with gratitude for her
patience, strength and everlasting support during the long, and sometimes
difficult time in which the book came into being.
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Introduction

1.1 Physics and computational physics

Solving a physical problem often amounts to solving an ordinary or partial
differential equation. This is the case in classical mechanics, electrodynamics,
quantum mechanics, fluid dynamics and so on. In statistical physics we
must calculate sums or integrals over large numbers of degrees of freedom.
Whatever type of problem we attack, it is only in very few cases that
analytical solutions are possible. In most cases we therefere resort to numerical
calculations to obtain useful results. Computer performance has increased
dramatically over the last few decades (see also chapter 14) and we can solve
complicated equations and evaluate large integrals in a reasonable amount of
time.

Often we can apply numerical routines (found in software libraries for
example) directly to the physical equations and obtain a solution. We shall see,
however, that although computers have become very powerful, they are still
unable to provide a solution to most problems without approximations to the
physical equations. In this book, we shall focus on these approximations, that
is, we shall concentrate on the development of computational methods (and
also on their implementation into computer programs). In this introductory
chapter we give a bird’s-eye perspective of different fields of physics and
the computational methods used to solve problems in these areas. We give
examples of direct application of numerical methods but we also give brief and
heuristic descriptions of the additional theoretical analysis and approximations
necessary to obtain workable methods for more complicated problems which
are described in more detail in the remainder of this book. The order adopted
in the following sections differs somewhat from the order in which the material
is treated in this book.



2 Introduction

1.2 Classical mechanics and statistical mechanics

The motion of a point particle in one dimension subject to a force F, depending
on the particle’s position x, and perhaps on the velocity x and on time ¢, is
determined by Newton’s equation of motion:

mx(t) = F[x(t),%(t),1]. (1.1)

The (double) dot denotes a (double) derivative with respect to time. A solution
can be found for each set of initial conditions x(#y) and x(#y) given at some time
to. Analytical solutions exist for constant force, for the harmonic oscillator
(F = xx?/2), and for a number of other cases. In section A.7.1.3 a simple
numerical method for solving this equation is described and this can be applied
straightforwardly to arbitrary forces and initial conditions.

Interesting and sometimes surprising physical phenomena can now be
studied. As an example, consider the Duffing oscillator,* with a force given

by
F = —yx+ 2ax— 4bx® + Fycos(wt). (1.2)

The first term on the right hand side represents a velocity-dependent friction;
the second and third terms are the force a particle feels when it moves in a
double potential well bx* — ax?, and the last term is an external periodic force.
An experimental realisation is a pendulum consisting of an iron ball suspended
by a thin string, with two magnets below it. The pendulum and the magnets
are placed on a table which is moved back and forth with frequency w. The
string and the air provide the frictional force, the two magnets together with
gravity form some kind of double well, and, in the reference frame in which
the pendulum is at rest, the periodic motion of the table is felt as a periodic
force. It turns out that the Duffing oscillator exhibits chaotic behaviour for
particular values of the parameters v, a, b, Fy and ®. This means that the motion
itself looks irregular and that a very small change in the initial conditions will
grow and result in completely different motion. Figure 1.1 shows the behaviour
of the Duffing oscillator for two nearly equal initial conditions, showing the
sensitivity to these conditions. Over the last few decades, chaotic systems
have been studied extensively. A system which often behaves chaotically is
the weather: the difficulty in predicting the evolution of chaotic systems causes
weather forecasts to be increasingly unreliable as they look further into the
future, and occasionally to be drastically wrong.

Another interesting problem is that of several particles, moving in three
dimensions and subject to each other’s gravitational interaction. Our solar
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Figure 1.1: Solution of the Duffing oscillator. Parameters are m =1, a="'/4, b=
l/2, Fo=2.0, ® =24, y=0.1. Two solutions are shown: one with initial position
xo = 0.5, the other with xp = 0.5001 (xp = O in both cases). For these nearly equal
initial conditions, the solutions soon become uncorrelated, showing the difficulty in
predicting the time evolution of a chaotic system.

N

system is an example. For the simplest nontrivial case of three particles (for
two particles, Newton has given the analytical solution), analytical solutions
exist for particular configurations, but the general problem can only be
solved numerically. This problem is called the three-body problem (N-body
problem in general). The motion of satellites orbiting in space is calculated
numerically using programs for the N-body problem, and the evolution of
galaxies is calculated with similar programs using a large number of test
particles (representing the stars) — millions of particles can be treated using a
combination of high-end computers and clever computational methods which
will be considered in chapter 8. Electrostatic forces are related to gravitational
forces, as both the gravitational and the electrostatic (Coulomb) potential have
a 1/r form. The difference between the two is that electrostatic forces can be
repulsive and attractive, whereas gravitational forces are always attractive.
Neutral atoms interact via a different potential: they attract each other
weakly unless they come too close — then they start repelling each other. The
problem of many interacting atoms and molecules is a very important subfield
of computational physics: it is called molecular dynamics. In molecular
dynamics, the equations of motion for the particles are solved straightforwardly
using numerical algorithms similar to those with which a Duffing oscillator is
analysed, the main difference being the larger number of degrees of freedom in
molecular dynamics. The aim of molecular dynamics simulations is to extract
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data for gases, liquids and solids (and systems in other phases, like liquid
crystals). An important result is the equation of state: this is the relation
between temperature, number of particles, pressure and volume. Also, the
microscopic structure as exhibited by the pair correlation function, which is
experimentally accessible via neutron scattering, is an interesting property
which can be determined in simulations. There are, however, many problems
and pitfalls associated with computer simulations: the systems which can be
simulated are always much smaller than realistic systems, and simulating a
system at a predefined temperature or chemical potential is nontrivial. All these
aspects will be treated extensively in chapter 8.

1.3 Stochastic simulations

In the previous section we have explained how numerical algorithms for
solving Newton’s equations of motion can be used to simulate liquids. The
particles are moved around according to their mechanical trajectories which
are governed by the forces they exert on each other. Another way of moving
them around is to displace them in a random fashion. Of course this must be
done in a controlled way, and not every move should be allowed, but we shall
see in chapter 10 that it is possible to obtain information in this way similar to
that obtained from molecular dynamics. This is an example of a Monte Carlo
method — procedures in which random numbers play an essential role. The
Monte Carlo method is not suitable for studying dynamical physical quantities
such as transport coefficients, as this method uses an artificial dynamics to
simulate many-particle systems.

Random number generators can also be used in direct simulations: some
process of which we do not know the details is replaced by a random generator.
If you simulate a card game for example, the distribution of the cards among the
players is done using random numbers. An example of a direct simulation in
physics is diffusion limited aggregation (DLA), which describes the growth of
dendritic clusters (see figure 1.2). Consider a square lattice in two dimensions.
The sites of the lattice are either occupied or unoccupied. Initially, only one site
in the centre is occupied. We release a random walker from the boundary of the
lattice. The walker moves over the lattice in a stepwise fashion. At each step,
the walker moves from a site to one of its neighbour sites, which is chosen at
random (there are four neighbours for each site in the interior of the lattice, and
two or three at the angles and at the sides respectively). If the walker arrives at
a neighbouring site of the central site which is occupied, it sticks there, so that
a two-site cluster is formed. Then a new walker is released from the boundary.



