| KRB EESNE B BB RS

William Ford
William Topp

| BRGN

C++iE2=
ﬁm%ﬁﬁﬁﬁ(ﬁl)

ATERF Hihftt

T EEST
Fiuw (em

= R

Covr o W

Ik (RTL

REHENHEEINEL MM, #E5EF (DA

Data Structures with C++
Using STL

Second Edition

HIEGEH C+HESHEk—

R RFRESERE (STL)
52 R

William Ford

University of the Pacific
Computer Science Department

William Topp

University of the Pacific
Computer Science Department

B XFE LR

EISBN 0-13-085850-1

Data Structures with C++ Using STL Second Edition
William Ford, William Topp

Copyright © 2002 by Prentice Hall

Original English Language Edition Published by Prentice-Hall, Inc.
All Rights Reserved.

For sale in Mainland China only.

APLENR B A B E MIREEARBE R AL E T AR . AT, &
. BT ATBIX R & X R 5.
REHEEFTTA, FEUEAAREHSRERENEAEHS.

AEHEWEEEHE HEERARAEHIRE, TREEFSHE.
TR FEEREFRFES: BF: 01-2002-3020

B £ M 4R B (CTIP)#i#7E

BARGW CHHBESHIR. B0 NAWABRKRE (STL): 2R/ () %,

(%) HHEFE —EAR, —Jb5. BERFEHRBI, 2003
(RE¥WENHERINELEM. HSBERTD

ISBN 7-302-06259-5

I. % 1. O OF- 1. OFELEH - BFER—8M — ¥ QFEY
Fr—EER — M — 5 GOC S BRI —SE#R— 8~ V. TP311.12
th E R A B B CIP H#EZF (2003) 55 004205 5

W& EEXEHERE JAEREEREERRE, % 100084)
http:// www.tup.tsinghua.edu.cn

ENRIZE: JbFT4 it eI

Zi7&: BEPEREILRATH

787%X960 1/16 ENFK: 66.5

: 20034 1 A% 1AL 2003 4 1 A% 1 IREDKI

: ISBN 7-302-06259-5/TP * 3745

: 0001~5000

: 86.00 G

WD E H
S @ a0 55 M

w

Preface

This book is designed to present the fundamentals of data structures from an ob-
ject-oriented perspective. The focus is on data structures that efficiently store large
collections of data. The structures, called containers, feature operations to access, in-
sert, and remove items from the collection. The study of data structures is core to a
computer science curriculum. This curriculum has had a rich and storied tradition.
Computer researchers and practioners have evolved a wide range of container
structures to meet different problem situations. Initially, the focus was on imple-
mentation issues so that programs could efficiently store and access large data sets
within the limited physical resources of the computer system. As computers devel-
oped greater CPU power and increased memory and storage capabilities, re-
searchers and practioners were free to give more consideration to the abstract
design of the containers. The efforts were greatly aided by an emerging emphasis on
object-oriented programming. Object technology provides a means of viewing con-
tainers as objects with designated operations to handle the data. A class declaration
defines the structure of a container. The public member functions describe a pro-
gramming interface that allows a container to be used in applications.

Researchers at AT&T Bell Laboratories and Hewlett-Packard Research Labs
combined the principles of generic and object-oriented programming to create a
unified approach to the study of data structures and algorithms. The result is the
Standard Template Library (STL), which is now part of the standard C+ + library.
STL provides a modern approach to data structures. It categories the structures as
sequence and associative containers, along with adapter classes. By using templates
and iterators, the STL library allows a programmer to execute a broad range of al-
gorithms that apply to each of the container classes.

This is, however, not a book on STL. It draws on the design structure of STL to
create a unifying study of data structures. The reader will be introduced to the basics

xxiii

xXxiv Preface

of STL and become familiar with the essential elements of the library. The result
will be an appreciation of the power, simplicity, and usefulness of STL. With this
background, the reader can easily read a technical book on STL to learn more of its
many features. While this book is designed as a textbook, a computer professional
could use it as a self-study guide to data structures.

Approach to Data Structures

This book uses a very careful and systematic approach in the development of each
data structure. The reader first views a structure informally as an ADT that provides
a description of how the container stores elements. Text, figures, and examples pro-
vide a detailed understanding of the key operations for the data structure, without
reference to any implementation. The reader is then introduced to a second view of
the structure using a formal C+ + class declaration or an API. The latter refers to an
Application Programming Interface format that is the industry-wide standard for
presenting class operations. The API format includes the function prototype, a de-
scription of its action, and a listing of its preconditions and postconditions. We use
the API format to describe the STL container classes and the class declaration to
describe the other data structures that are developed in the book.

Once the reader is familiar with a formal represention of a data structure, the
book provides a series of applications, which illustrate problem-solving situations
that effectively use the structure. Having the reader understand the implemantion
of a data structure is a key feature of the book. Corresponding to each STL contain-
er class, the book presents a “miniContainer” class that uses the STL interface but
offers a straight forward implementation of the operations. The text clearly presents
the design and coding of the key operations. The supplemental software supplies a
complete listing of the class, with well-documented code.

Ins and Outs of the Book

This book assumes the reader has completed a first course in C++ object-oriented
programming. The authors assume that the concepts of object composition, opera-
tor overloading, pointers and dynamic memory, and inheritance are covered briefly,
if at all, in a first course. These concepts are carefully developed in this book in the
context of their application to data structures. Periodically the book introduces only
the essentials of a programming concept, and makes available a Web Tutorial that
develops the concept in greater depth. The tutorials include examples and programs
and provide the reader with enrichment that is not critical to understanding the text.
The existence of a tutorial is clearly marked with an icon in the margin.

Chapters 1 through 10 cover sequence containers (array, vector, list, deque),
the adapter classes (stacks, queues, and priority queues), and an introduction to as-
sociative tree containers. The material, along with a development of pointers, dy-
namic memory, and linked lists contains the topics usually covered in a first course
in data structures (CS2).

Preface XXV

Chapters 11 through 16 introduce more advanced containers that include sets,
maps, balanced trees, heaps, hash tables and graphs. The chapters also include a
study of applied searching and sorting algorithms, advanced recursion, and graph al-
gorithms. The material is appropriate for a followup course in advanced data struc-
tures and applied algorithms (CS7).

Supplemental Resources

Readers may access the complete source code listings for all classes and pro-
grams in the book from the authors’ website at http//www.uop.edu/fordtopp or
http://www.fordtopp.com, and from Prentice Hall at http://www.prenhall.com. The
C++ source code has been tested and run in the Windows environment using Mi-
crosoft Visual C++ and Borland C+ + Builder, and in the UNIX environment using
GNU C+ +.The graphics library is implemented in each of these environments.

To successfully compile and run the programs in the book using the Microsoft
Visual C++ 6.0 compiler, the reader must install the latest Service Pack. Instruc-
tions for obtaining and loading the service pack are available on the authors’ and
Prentice Hall web sites. The same sites include the Web tutorials and Powerpoint
slides that present the key topics from each chapter.

An Instructor’s Resource CD (IRCD) is available to instructors and pro-
vides answers to all of the written exercises and a solution to all of the program-
ming exercises and programming projects. The IRCD also has sample tests with
questions in a variety of formats. All of these elements are provided in Word for-
mat (“.doc”) to enable the selection and modification of individual items. For
printing only, the IRCD also supplies the materials in Acrobat Reader (“.pdf”)
and postscript (“.ps”) format. In addition, it provides individual source files of all
the programs (*.cpp) and classes (*.h) that are developed in the exercises. The
IRCD is available upon request by Professors and Instructors from your local
Prentice Hall sales representative.

Acknowledgments

The authors have been supported by friends, students, and colleagues throughout
the preparation of the second edition of Data Structures with C++ using STL. The
University of the Pacific has generously provided resources and support to com-
plete the project. Prentice Hall offered a dedicated team of professionals who han-
dled the book design and production. We are especially grateful to our acquisitions
editor, Petra Recter and to the production editor, AudriAnna Bazlen. We also ap-
preciate the efforts of Sara Burrows, assistant editor, who worked with us on the
compilation of the supplements, and the work of Jennie Burger, who is doing the ac-
tive marketing of the book.

Students have offered valuable criticism of the manuscript by giving us explic-
it feedback. Our reviewers offered guidance during the design of the new edition
and then followed up with detailed comments on both the content and the pedagog-

XXVi Preface

ical approach. We took most of their recommendations into account. Thanks go to
Carol Roberts, University of Maine; Ken Bosworth, Idaho State University; Ralph
Ewton, University of Texas, El Paso. Special thanks go to James Slack at Minnesota
State University, Mankato, who made extensive and detailed suggestions. His in-
sights and support were invaluable to the authors and greatly improved the final de-
sign and content of the book.

William Ford
William Topp

Contents

1 IntroductiontoData Structuresccoerieeneininnesns.

1-1 WHAT IS THIS BOOK ABOUT? 2
Data Structures and Algorithms 5

1-2 ABSTRACT VIEW OF DATA STRUCTURES 5
The time24d ADT 6

1-3 ANADTASA CLASS 8

The C++ Class 8

Private and Public Sections 9
Encapsulation and Information Hiding 9
The time24 Class 9

1-4 IMPLEMENTING C++ CLASSES 13
Implementation of the time24 Class 14
1-5 DECLARING AND USING OBJECTS 18
Running a Program 18
1-6 IMPLEMENTING A CLASS WITH INLINE CODE 21

Compiler Use of Inline Code 22
ix

1-7

1-8

2 Object Design Techniques

2-1

2-2

2-3

APPLICATION PROGRAMMING INTERFACE(API) 23

Random Numbers 24
The randomNumber API 24
Application: The Game of Craps 26

STRINGS 28

The string Class 30
Additional String Functions and Operations 31

CHAPTER SUMMARY 36
CLASSES AND LIBRARIES INTHE CHAPTER 37
REVIEW EXERCISES 38

Answers to Review Exercises 40

WRITTEN EXERCISES 42
PROGRAMMING EXERCISES 48
PROGRAMMING PROJECTS 51

SOFTWARE DESIGN 55

Request and Problem Analysis 56
Program Design 57

Designing the Calendar Class 58
Program Implementation 62
Implementing the Calendar Class 62
Program Testing and Debugging 64
Program Maintenance 68

HANDLING RUNTIME ERRORS 68

Terminate Program 69
Set a Flag 69
C++ Exceptions 70

OBJECT COMPOSITION 74

The timeCard Class 75
Implementing the timeCard Class 77

OPERATOR OVERLOADING 82 -

Operator Functions 85

Operator Overloading with Free Functions 86
Operator Overloading with Friend Functions 87
Overloading Stream 1/0 Operators 89

Member Function Overloading 94

CHAPTER SUMMARY 97
CLASSES AND LIBRARIES INTHE CHAPTER 98

....................................

Contents

Contents

xi

REVIEW EXERCISES 99

Answers to Review Exercises 100

WRITTEN EXERCISES 102
PROGRAMMING EXERCISES 107
PROGRAMMING PROJECTS 108

3 IntroductiontoAlgorithmscciiveiinnnnn.

3-1

3-2

33

3-5

3-6

37

SELECTION SORT 115
Selection Sort Algorithm 116
SIMPLE SEARCH ALGORITHMS 120

Sequential Search 120
Binary Search 122

ANALYSIS OF ALGORITHMS 127

System/Memory Performance Criteria 128

Algorithm Performance Criteria: Running Time Analysis 128
Big-O Notation 131

Common Orders of Magnitude 133

ANALYZING THE SEARCH ALGORITHMS 135

Binary Search Running Time 135
Comparing Search Algorithms 136

MAKING ALGORITHMS GENERIC 139

Template Syntax 140
Runtime Template Expansion 142
Template-Based Searching Functions 144

THE CONCEPT OF RECURSION 146

Implementing Recursive Functions 148
How Recursion Works 149
Application: Multibase Output 152

PROBLEM SOLVING WITH RECURSION 155

Tower of Hanoi 155

Number Theory: The Greatest Common Divisor 159
Application of gcd - Rational Numbers 161
Evaluating Recursion 164

CHAPTER SUMMARY 168
CLASSES AND LIBRARIES IN THE CHAPTER 169
REVIEW EXERCISES 169

Answers to Review Exercises 172

xii Contents

WRITTEN EXERCISES 173
PROGRAMMING EXERCISES 179
PROGRAMMING PROJECT 182

4 TheVectorContainerc.orimiueerunueeneneeeennen 183

4-1 OVERVIEW OF STL CONTAINER CLASSES 184
4.2 TEMPLATE CLASSES 188

Constructing a Template Class 188
Declaring Template Class Objects 191

4-3 THE VECTOR CLASS 192

Introducing the Vector Container 195
The Vector API 200

4-4 VECTOR APPLICATIONS 202

Joining Vectors 203
The Insertion Sort 203

CHAPTER SUMMARY 208
CLASSES AND LIBRARIES IN THE CHAPTER 209
REVIEW EXERCISES 209

Answers to Review Exercises 211

WRITTEN EXERCISES 211
PROGRAMMING EXERCISES 216
PROGRAMMING PROJECT 217

5 Pointers and DynamicMemory 0 ciiiiiiiiann. 219

51 C++ POINTERS 221

Declaring Pointer Variables 222
Assigning Values to Pointers 222
Accessing Data with Pointers 224
Arrays And Pointers 225
Pointers and Class Types 227

5-2 DYNAMIC MEMORY 229

The Memory Allocation Operator new 229
Dynamic Array Allocation 231
The Memory Deallocation Operator delete 232

53 CLASSES USING DYNAMIC MEMORY 234

The Class dynamicClass 234
The Destructor 236

Contents

54

5-5

5-6

xiii

ASSIGNMENT AND INITIALIZATION 240

Assignment Issues 240

Overloading the Assignment Operator 242
The Pointer this 243

Initialization Issues 243

Creating a Copy Constructor 244

THE MINIVECTOR CLASS 247

Design of the miniVector Class 248

Reserving More Capacity 251

The MiNIVector Constructor, Destructor, and Assignment 253
Adding and Removing Elements from a MiNIVector Object 254
Overloading the Index Operator 258

THE MATRIX CLASS 260

Describing the Matrix Container 261
Implementing Matrix Functions 265

CHAPTER SUMMARY 266
CLASSES AND LIBRARIES IN THE CHAPTER 267
REVIEW EXERCISES 268

Answers to Review Exercises 270

WRITTEN EXERCISES 271
PROGRAMMING EXERCISES 277
PROGRAMMING PROJECT 279

6 The List ContainerandMeratorsccuo'onnnnnn..

6-1

6-2

6-3

6-4

THE LIST CONTAINER 282

The list ADT 284
The list API 286
Application: A List Palindrome 288

ITERATORS 290

The Iterator Concept 290

Constant Iterators 294

The Sequential Search of a List 296
Application: Word Frequencies 298

GENERAL LIST INSERT AND ERASE OPERATIONS 302

Ordered Lists 305
Removing Duplicates 307
Splicing Two Lists 309

CASE STUDY: GRADUATION LISTS 310

Xiv

7 Stacks

7-1

7-2
7-3

7-4

7-5

8 Queues and Priority Queues

8-1

Problem Analysis 310
Program Design 310
Program Implementation 312

CHAPTER SUMMARY 315
CLASSES AND LIBRARIES INTHE CHAPTER 316
REVIEW EXERCISES 316

Answers to Review Exercises 318

WRITTEN EXERCISES 319
PROGRAMMING EXERCISES 322
PROGRAMMING PROJECT 325

...

THE STACK ADT 328

Multibase Output 332
Uncoupling Stack Elements 336

RECURSIVE CODE AND THE RUNTIME STACK 339
STACK IMPLEMENTATION 342

miniStack Class Implementation 345
Implementation of the STL stack Class (Optional) 346

POSTFIX EXPRESSIONS 347

Postfix Evaluation 349
The postfixEval Class 350

CASE STUDY: INFIX EXPRESSION EVALUATION 357

Infix Expression Attributes 358

Infix to Postfix Conversion: Algorithm Design 359
Infix to Postfix Conversion: Object Design 364
infix2 Postfix Class Implementation 366

CHAPTER SUMMARY 372
CLASSES INTHE CHAPTER 373
REVIEW EXERCISES 373

Answers to Review Exercises 375

WRITTEN EXERCISES 377
PROGRAMMING EXERCISES 381
PROGRAMMING PROJECTS 382

THE QUEUE ADT 386
Application: Scheduling Queue 388

Contents

Contents xv

8-2 THE RADIX SORT 390
Radix Sort Algorithm 391
83 IMPLEMENTING THE MINIQUEUE CLASS 395
Implementation of the STL queue Class (Optional) 398
8-4 CASE STUDY: TIME-DRIVEN SIMULATION 399

Simulation Design 400
Simulation Implementation 401

8-5 ARRAY-BASED QUEUE IMPLEMENTATION 406

Designing the Bounded Queue 409
Implementing the Bounded Queue 411

8-6 PRIORITY QUEUES 412

Priority Queue ADT 413
Sorting with a Priority Queue 415
Company Support Services 417

CHAPTER SUMMARY 421
CLASSES AND LIBRARIES IN THE CHAPTER 422
REVIEW EXERCISES 423

Answers to Review Exercises 425

WRITTEN EXERCISES 426
PROGRAMMING EXERCISES 430
PROGRAMMING PROJECT 432

9 Linked Listst itenseisineneesseeeeenunes

9-1 LINKED LIST NODES 438

The node Class 439
Adding and Removing Nodes 442

9-2 BUILDING LINKED LISTS 443

Defining a Singly Linked List 443
Inserting at the Front of a Linked List 445
Erasing at the Front of a Linked List 447
Removing a Target Node 448

9-3 HANDLING THE BACK OF THE LIST 452
Designing a New Linked List Structure 453
9-4 IMPLEMENTING A LINKED QUEUE 455

The linkedQueue Class 456
Implementing the linkedQueue Class 457

9-5 DOUBLY LINKED LISTS 462

Xvi Contents

dnode Objects 463
Circular Doubly Linked Lists 466

9-6 UPDATING A DOUBLY LINKED LIST 468

The insert() Function 468
The erase() Function 470

9-7 THE JOSEPHUS PROBLEM 474
9-8 THE MINILIST CLASS 477

miniList Class Private Members 478

miniList Class Constructors and Destructor 479
Functions Dealing with the Ends of a List 480
minilList Iterators 481

The miniList Member Functions begin() and end() 485
The General List [nsert Function 485

99 SELECTING A SEQUENCE CONTAINER 486

CHAPTER SUMMARY 487
CLASSES AND LIBRARIES IN THE CHAPTER 489
REVIEW EXERCISES 489

Answers to Review Exercises 493

WRITTEN EXERCISES 495
PROGRAMMING EXERCISES 498
PROGRAMMING PROJECT 500

10 BinaryTreesoiuiuun ettt e, 502

10-1 TREE STRUCTURES 504

Tree Terminology 505
Binary Trees 506

10-2 BINARY TREE NODES 510
Building a Binary Tree 511
10-3 BINARY TREE SCAN ALGORITHMS 514

Recursive Tree Traversals' 514
Iterative Level-Order Scan 518

10-4 USING TREE SCAN ALGORITHMS 522

Computing the Leaf Count 522
Computing the Depths of a Tree 523
Copying a Binary Tree. 526

Deleting Tree Nodes. 529

Displaying a Binary Tree. 530

10-5 BINARY SEARCH TREES 532

Contents xvii

Introducing Binary Search Trees 533
Building a Binary Search Tree 534
Locating Data in a Binary Search Tree 535
Removing a Binary Search Tree Node 536
A Binary Search Tree Class 537

Access and Update Operations 538

10-6 USING BINARY SEARCH TREES 543

Application: Removing Duplicates 543
Application: The Video Store 545

10-7 IMPLEMENTING THE stree CLASS 551

The stree Class Data Members 553

Constructor, Destructor, and Assignment 554
Update Operations 554

Complexity of Binary Search Tree Operations 563

10-8 THE STREE ITERATOR (Optional) 563
Implementing the stree Iterator 565

CHAPTER SUMMARY 569
CLASSES AND LIBRARIES IN THE CHAPTER 571
REVIEW EXERCISES 571

Answers to Review Exercises 574

WRITTEN EXERCISES 576
PROGRAMMING EXERCISES 579
PROGRAMMING PROJECTS 581

11 Associative Containers e e e ettt 586

1141 OVERVIEW OF ASSOCIATIVE CONTAINERS 587

Associative Container Categories 587
STL Associative Containers 590
Implementing Associative Containers 590

11-2 SETS 591

Displaying a Container Using Iterators 592

Set Access and Update Functions 593

A Simple Spelling Checker 596

Application: Sieve of Eratosthenes 600

Set Operations 603

Application: Updating Computer Accounts 606

11-3 MAPS 610

The Map Class Interface 610
Map Operations 613

