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Preface

This book is designed to present the fundamentals of data structures from an ob-
ject-oriented perspective. The focus is on data structures that efficiently store large
collections of data. The structures, called containers, feature operations to access, in-
sert, and remove items from the collection. The study of data structures is core to a
computer science curriculum. This curriculum has had a rich and storied tradition.
Computer researchers and practioners have evolved a wide range of container
structures to meet different problem situations. Initially, the focus was on imple-
mentation issues so that programs could efficiently store and access large data sets
within the limited physical resources of the computer system. As computers devel-
oped greater CPU power and increased memory and storage capabilities, re-
searchers and practioners were free to give more consideration to the abstract
design of the containers. The efforts were greatly aided by an emerging emphasis on
object-oriented programming. Object technology provides a means of viewing con-
tainers as objects with designated operations to handle the data. A class declaration
defines the structure of a container. The public member functions describe a pro-
gramming interface that allows a container to be used in applications.

Researchers at AT&T Bell Laboratories and Hewlett-Packard Research Labs
combined the principles of generic and object-oriented programming to create a
unified approach to the study of data structures and algorithms. The result is the
Standard Template Library (STL), which is now part of the standard C+ + library.
STL provides a modern approach to data structures. It categories the structures as
sequence and associative containers, along with adapter classes. By using templates
and iterators, the STL library allows a programmer to execute a broad range of al-
gorithms that apply to each of the container classes.

This is, however, not a book on STL. It draws on the design structure of STL to
create a unifying study of data structures. The reader will be introduced to the basics
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of STL and become familiar with the essential elements of the library. The result
will be an appreciation of the power, simplicity, and usefulness of STL. With this
background, the reader can easily read a technical book on STL to learn more of its
many features. While this book is designed as a textbook, a computer professional
could use it as a self-study guide to data structures.

Approach to Data Structures

This book uses a very careful and systematic approach in the development of each
data structure. The reader first views a structure informally as an ADT that provides
a description of how the container stores elements. Text, figures, and examples pro-
vide a detailed understanding of the key operations for the data structure, without
reference to any implementation. The reader is then introduced to a second view of
the structure using a formal C+ + class declaration or an API. The latter refers to an
Application Programming Interface format that is the industry-wide standard for
presenting class operations. The API format includes the function prototype, a de-
scription of its action, and a listing of its preconditions and postconditions. We use
the API format to describe the STL container classes and the class declaration to
describe the other data structures that are developed in the book.

Once the reader is familiar with a formal represention of a data structure, the
book provides a series of applications, which illustrate problem-solving situations
that effectively use the structure. Having the reader understand the implemantion
of a data structure is a key feature of the book. Corresponding to each STL contain-
er class, the book presents a “miniContainer” class that uses the STL interface but
offers a straight forward implementation of the operations. The text clearly presents
the design and coding of the key operations. The supplemental software supplies a
complete listing of the class, with well-documented code.

Ins and Outs of the Book

This book assumes the reader has completed a first course in C++ object-oriented
programming. The authors assume that the concepts of object composition, opera-
tor overloading, pointers and dynamic memory, and inheritance are covered briefly,
if at all, in a first course. These concepts are carefully developed in this book in the
context of their application to data structures. Periodically the book introduces only
the essentials of a programming concept, and makes available a Web Tutorial that
develops the concept in greater depth. The tutorials include examples and programs
and provide the reader with enrichment that is not critical to understanding the text.
The existence of a tutorial is clearly marked with an icon in the margin.

Chapters 1 through 10 cover sequence containers (array, vector, list, deque),
the adapter classes (stacks, queues, and priority queues), and an introduction to as-
sociative tree containers. The material, along with a development of pointers, dy-
namic memory, and linked lists contains the topics usually covered in a first course
in data structures (CS2).
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Chapters 11 through 16 introduce more advanced containers that include sets,
maps, balanced trees, heaps, hash tables and graphs. The chapters also include a
study of applied searching and sorting algorithms, advanced recursion, and graph al-
gorithms. The material is appropriate for a followup course in advanced data struc-
tures and applied algorithms (CS7).

Supplemental Resources

Readers may access the complete source code listings for all classes and pro-
grams in the book from the authors’ website at http//www.uop.edu/fordtopp or
http://www.fordtopp.com, and from Prentice Hall at http://www.prenhall.com. The
C++ source code has been tested and run in the Windows environment using Mi-
crosoft Visual C++ and Borland C+ + Builder, and in the UNIX environment using
GNU C+ +.The graphics library is implemented in each of these environments.

To successfully compile and run the programs in the book using the Microsoft
Visual C++ 6.0 compiler, the reader must install the latest Service Pack. Instruc-
tions for obtaining and loading the service pack are available on the authors’ and
Prentice Hall web sites. The same sites include the Web tutorials and Powerpoint
slides that present the key topics from each chapter.

An Instructor’s Resource CD (IRCD) is available to instructors and pro-
vides answers to all of the written exercises and a solution to all of the program-
ming exercises and programming projects. The IRCD also has sample tests with
questions in a variety of formats. All of these elements are provided in Word for-
mat (“.doc”) to enable the selection and modification of individual items. For
printing only, the IRCD also supplies the materials in Acrobat Reader (“.pdf”)
and postscript (“.ps”) format. In addition, it provides individual source files of all
the programs (*.cpp) and classes (*.h) that are developed in the exercises. The
IRCD is available upon request by Professors and Instructors from your local
Prentice Hall sales representative.
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