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Introduction

The limit theorems in this book belong to the theory of weak convergence of
probability measures on metric spaces.

More precisely, our main aim is to give a systematic exposition of the theory
of convergence in law for those stochastic processes that are semimartingales.

The choice of the class of semimartingales as our chief object of study has
two reasons. One is that this class is broad enough to accomodate most com-
mon processes: discrete-time processes, diffusions, many Markov processes,
point processes, solutions of stochastic differential equations, ... Our second
reason is that we have in our hands a very powerful tool for studying these
processes, namely the stochastic calculus. Since the theory of semimartingales,
and related topics as random measures, are not usually associated with limit
theorems, we decided to write a rather complete account of that theory,
which is covered in the first two chapters. In particular, we devote much
space to a careful and detailed exposition of the notion of characteristics
of a semimartingale, which extends the well-known “Lévy-Khintchine triplet”
for processes with independent increments (drift term, variance of the Gaussian
part, Lévy measure), and which plays a particularly important rdle in limit
theorems.

The meaning of X™ Lx (that is, the sequence (X") of processes converges
in law to the process X) is not completely straightforward. The first idea
would be to use “finite-dimensional convergence”, which says that for any

choice ¢, ..., ¢, of times, then (X,"l,...,X,"p) goes in law to (Xi,5..., X, ). This

is usually unsatisfactory because it does not ensure convergence in law of
such simple functionals as inf(t: X* > a) or sup;<; Xj, etc... In fact, since the
famous paper [199] of Prokhorov, the traditional mode of convergence is
weak convergence of the laws of the processes, considered as random ele-
ments of some functional space. Because semimartingales are right-continuous
and have left-hand limits, here the fundamental functional space will always
be the “Skorokhod space” D introduced by Skorokhod in [223]: this
space can be endowed with a complete separable metric topology, and
X4 x wil always mean weak convergence of the laws, relative to that
topology.

How does one prove that X" & x ?,and in which terms is it suitable to express
the conditions? The method proposed by Prokhorov goes as follows:
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i) (ii)
Tightness of the Convergence of finite-
sequence (.X") dimensional distributions

(i)
\Churucterization of (X) by
Iﬁnite-dimensional distributions

x"4x

{as a matter of fact, this is even an equivalence; and of course (iii) is essentially

trivial). Sometimes, we will make use of this method. However, it should be

emphazised that very often step (ii) is a very difficult (or simply impossible) task
to accomplish (with a notable exception concerning the case where the limiting
process has independent increments). This fact has led to the development
of other strategies; let us mention, for example, the method based upon the
“embedding theorem” of Skorokhod, or the “approximation and o-topological
spaces methods” of Borovkov, which allows one to prove weak convergence for
large classes of functionals and which are partly based upon (ii). Here we expound
the strategy called “martingale method”, initiated by Stroock and Varadhan, and
which goes as follows:

(i) (iii')
Convergence of triplets Characterization of (X) by the

. . . =x"4Xx
of characteristics triplet of characteristics

) +

Here the difficult step is (iii’): we devote a large part of Chapter I1I to the
explicit statement of the problem (called “martingale problem™) and to some
partial answers.

In both cases, we need step (i): in Chapter VI we develop several tightness
criteria especially suited to semimartingales; we also use this opportunity to
expose elementary—and less elementary—facts about the Skorokhod topology,
in particular for processes indexed by the entire half-line R,.

The limit theorems themselves are presented in Chapters VII, VIIT and IX
(the reader can consult [166] for slightly different aspects of the same theory).
Conditions insuring convergence always have a similar form, for simple situa-
tions (as convergence of processes with independent increments) as well as for
more complicated ones (convergence of semimartingales to a semimartingale).
Roughly speaking, they say that the triplets of characteristics of X* converge
to the triplet of characteristics of X. As a matter of fact, these conditions are

more extensions of two sets of results that are apparently very far apart: those

concerning convergence of rowwise independent triangular arrays, as in the
book [65] of Gnedenko and Kolmogorov; and those concerning convergence
of Markov processes (and especially of diffusion processes, in terms of their
coefficients), as in the book [233] of Stroock and Varadhan.

Beside limit theorems, the reader will find apparently disconnected resuits,
which concern absolute continuity for a pair of measures given on a filtered space,

R ]
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and contiguity of sequences of such pairs. In fact, one of our motivations for
including such material is that we wanted to give some statistically-oriented
applications of our limit theorems (a second motivation is that we indeed find
this subject interesting on its own): that is done in Chapter X, where we study
convergence of likelihood ratio processes (in particular asymptotic normality)
and the so-called “statistical invariance principle” which gives limit theorems
under contiguous alternatives. ‘

In order to prepare for these results, we need a rather deep study of contiguity:
this is done in Chapter V, in which Hellinger integrals and what we call Hellinger
processes are widely used. Hellinger processes are introduced in Chapter IV,
which also contains necessary and sufficient conditions for absolute continuity
and singularity in terms of the behaviour of those Hellinger processes. Finally,
let us mention that some material about convergence in variation is also included
in Chapter V.

Within each chapter, the numbering is as follows: 3.4 means statement
number 4 in Section 3. When referring to a statement in a previous chapter, say
Chapter II, we write I11.3.4.

In addition to the usual indexes (Index of Symbols; Index of Terminology),
the reader will find in the Index of Topics a reference to all the places in this
book where we write about a specific subject: for example, a reader interested
only in point processes should consult the Index of Topics first. Finally, all the
conditions on the triplets of characteristics which appear in our limit theorems
are listed in the Index of Conditions for Limit Theorems.

Parts of this work were performed while one or other author was enjoying
the hospitality of the Steklov Mathematical Institute or the Université Pierre et
Marie Curie, Paris V1. We are grateful for having had these opportunities.

Jean Jacod
Albert N. Shiryaev

Paris and Moscow,
June 1987



Basic Notation

R = (=0, +00) = the set of real numbers, R, = [0,20), R = [ —c0, +a0]

R, =[0,0]

Q = the set of rational numbers, @, = QNR,

N = {0,1,2,...} = the set of integers, N* = {1,2,3,...}

C = the set of complex numbers

R? = the Euclidian d-dimensional space

Ix| = the Euclidian norm of x € R¢, or the modulus of xeC
x 'y = the scalar product of x e R? with y e R4

a v b=sup(a,b),a A b=inf(a,b)

x*=xv0x =(—x)vOforxeR

1, = the indicator function of the set A

A° = the complement of the set 4

&, = the Dirac measure sitting at point a

a.s. = almost surely

limgy, = lim,, ,o,, limgs, = lim
lim,, = hmg., .5, limgyy, = lim.,, .,

® = tensor product (of spaces, of ¢-fields)

[x] = the integer part of xe R,

Re(x), Im(x) = real and imaginary parts of xe C
« absolute continuity between measures

~ ~ equivalence between measures

L singularity between measures

{---} denotes a set

1, 5<t

F——
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Chapter I. The General Theory of Stochastic
Processes, Semimartingales and Stochastic
Integrals

The “General Theory of Stochastic Processes”, in spite of its name, encompasses
the rather restrictive subject of stochastic processes indexed by R, . But, within
this framework, it expounds deep properties related to the order structure of R,
and martingales play a central réle.

By now, there exist several books that give more or less complete accounts
on the‘theory: the basic book [33] of Dellacherie (which however does not deal
with stochastic integrals at all), the very complete book [36] of Dellacherie and
Meyer, or the book [180] of Métivier... But those may appear as a gigantic
investment, for somebody who is not acquainted with the theory beforehand, as
might presumably be many of the potential readers of this book. This is why we
feel necessary to present a sort of “résumé” that brings out all the needed facts
for limit theorems, along the quickest and {hopefully) most painless possible way
(although this way is somehow old-fashioned, especially for the presentation of
semimartingales and stochastic integrals).

As we wished this book to be as much self-contained as possible, we have
provided below all the proofs, with a few exceptions concerning the theory of
martingales (regularity of paths, Doob’s inequality, Doob’s optional theorem),
and also two difficult but reasonably well-known results: the Doob-Meyer de-
composition of submartingales, and the section theorem (for which we refer to
[33] or [36]).

However, despite the fact that all proofs do appear, this chapter is written in
the spirit of a résumé, not of a beginner’s course: for instance there are almost
no examples. So we rather advise the reader to go quickly through the statements
{to refresh his mind about notation and definitions) and then to proceed directly
to the next chapter.

1. Stochastic Basis, Stopping Times, Optional ¢-Field,
Martingales

Here are some standard notations to be used in all the book. If (Q,%#,P) is a
probability space, we denote by E(X) the expectation of any integrable random
variable X; if there is some ambiguity as to the measure P, we write Ep(X).



2 L. The General Theory of Stochastic Processes, Semimartingales and Stochastic Integrals

LP = LP(2, 7, P), for pe[1,0), is the space of all real-valued random vari-
ables X such that | X |? is integrable, with the usual identification of any two a.s.
(= almost surely) equal random variables. Similarly L™(2, #, P} is the set of all
P-essentially bounded real-valued random variables. The corresponding norms
are denoted by || X|| .

If 4 is a sub-o-field of #, the conditional expectation of the variable X is
well-defined whenever X is integrable or nonnegative or nonpositive, and we
denote by E(X|%) any version of it. As a matter of fact, it is also very convenient
to use the notion of generalized conditional expectation, which is defined for all
random variables by

E(X*|%) — E(X"|%9) on the set where E(]X||%) < ©

1.1 EX|%) = {-{—oo elsewhere.

In most cases, X = Y (or X < Y, etc...) stands for: “X = Y a.s. (almost surely)”
(or X < Ya.s,etc...).

§ 1a. Stochastic Basis

The reader will immediately notice that our main concern lies in stochastic
processes indexed by R, or perhaps an interval of R.. In this case, the theory
is built upon what is commonly known as a “stochastic basis”, to be recalled
below. However, we will occasionally deal with discrete-time processes, that are
indexed by N. To help the reader to make the connexion between the two settings,
at the end of every section of this chapter we provide an autonomous treatment
for the “discrete time”™: for instance, § 1f of this section provides for the discrete
version of what follows.

1.2 Definition. A stochastic basis is a probability space (2, #, P) equipped with
a filtration F = (#),.g,; here, filtration means increasing and right-continuous
family of sub-o-fields of & (in other words, #, = % fors <tand &, = (... %,).

By convention, we set: £, = F and F,— = \/;cr, Z- O

The stochastic basis # = (2, #, F, P)is also called a filtered probability space.
In many cases (but not always, as we shall see) it is possible to assume a further
property, namely

1.3 Definition. The stochastic basis (2, #,F, P) is called complete, or equiva-
lently is said to satisfy the usual conditions if the o-field & is P-complete and if
every %, contains all P-null sets of #. O

It is always possible to “complete” a given stochastic basis (2, #,F, P) as
follows:
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1.4 7" denotes the P-completion of the g-field #; .+"* denotes the set of all
P-null sets of #7; #” is the smallest o-field that contains # and .#%. Tt is very
easy to check that (2, #°,FF = (#F),.n_, P) is a new stochastic basis, called the
completion of (2, #,F, P). O

Let us fix some terminology:
1.5 A random set is a subset of 2 x R, O

1.6 A process (or, a E-valued process) is a family X = (X,), g, of mappings from
@ into some set E. Unless otherwise stated, E will be R? for some de N*. |

A process may, and often will, be considered as a mapping from Q x R, into
E, via

1.7 (@, 1)~ X (w0, 1) = X,(c).

We shall say indifferently: the process “X”, or “(X,)”, or “(X,),.g,”. Each mapping:
t ~ X {w), for a fixed we R, is called a path, or a trajectory, of the process X.

For example, the indicator function 1, of a random set A4 is a process; its
paths are the indicator functions of the R, -sections {: (w, t}e A} of A.

A process X is called cad (resp. cag, resp. cadlag), for “continu a droite” (resp.
“continu d gauche”, resp. continu 4 droite avec des limites @ gauche”) in French,
if all its paths are right-continuous (resp. are left-continuous, resp. are right-
continuous and admit left-hand limits). When X is cadlag we define two other
processes X_ = (X,_) g, and 4X = (4X,),.g, by

Xo-=X,, X,=limX; fort>0
1.8 st

4X, =X, — X,_

(hence 4X, = 0, which differs from a convention that is sometimes used, as in
[1837).

If X is a process and if T is a mapping: 2 — R, we define the “process stopped
at time T”, denoted by X T, by

1.9 X7 = Xy,

1.10 A random set A is called evanescent if the set {w: It e R, with (w,1)e A} is
P-null; two E-valued processes X and Y are called indistinguishable if the random
set {X # Y} = {(0,1): X,(w) # Y,(w)} is evanescent, ie. if almost all paths of X
and Y are the same. O

Note that if X and Y are indistinguishable, one has X, = Y, a.s. forall teR,,
but the converse is not true. This converse is true, however, when both X and Y
are cad, or are cag.

As for random variables, in most cases X = Y (or X < Y, etc...)for stochastic
processes means “up to an evanescent set”.
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§ 1b. Stopping Times
Let (Q,7,F,Pybea stochastic basis.

1.11 Definitions. 2) A stopping time is a mapping T: 2 — R, suchthat {T < tle
F forallteR,.

b) If T is a stopping time. we denote by .#; the collection of all sets 4 e F
such that AN{T <t} e F forall teR,.

¢) If T is a stopping time, we denote by #;_ the o-field generated by F; and
all tae sets of the form AN {t < T}, where te R, and Ae Z, O

One readily checks that #; is a o-field. If te R, and T(w) =¢, then T is a
stopping time and #; = # (recall that &, = # by 1.2); hence the notation %7
is not ambiguous. Similarly, for T = t, one has #p_ = %, if t =0, and F7_ =
\s<: F, is t > 0: hence the notation

F, ift=0

112 Fi- = \/ % ifte(0, o] (recall 1.2 again for #,_).
S<t

The o-field & is usually interpreted as the set of events that occur before or
at time ¢; then a stopping time is a random time T such that at each time ¢ one
may decide whether T < t or T > ¢ from what one knows up to time t; and #r
(resp. #_) is interpreted as the set of events that occur before or at time T (resp.
strictly before T').

Now we give a list of well-known and very useful properties of stopping times.
All the proofs can be easily provided for by the reader, or may be found in any
standard text-book.

1.13 If Tis a stopping time and te R, then T + t is a stopping time a
'1.14 1If Tis a stopping time, then #;_ < % and T is #;_-measurable. O

1.15 If T is a stopping time and if Ae %, then

o) = T(w) ifweAd
A= 10 fwda

is also a stopping time. O

1.16 A mapping T: 2 — R, is a stopping time if and only if {T < t} € # for all
teR,;in this case, a set A€F belongs to &y if and only if AN{T < t}e & for
all 1€ R, (the right-continuity of the filtration F is essential for this property). O

‘117 If S, T are two stopping times and if Ae %, then AN{S < T}eFy,
AN{S=T}eFr,and AN{S < T}eFp_. |

1. Stochastic Basis. Stopping Times, Optional 5-Field, Martingales 5

118 If (T,) is a sequence of stopping times, then S = A\ T, and T =\/ T, are
two stopping times, and F5 = () Fr . O

1.19  Lemma. Any stopping time T on the completed stochastic basis (Q2, 7 FF, P)
is a.s. equal to a stopping time on (Q2, %, F, P).

Proof. For each te R, there exists A,e # such that A4, = {T <t} a.s. (see 1.4).
Then T'(w) = inf(seQ,:weA,) is an F-stopping time (because {T' <t} =
Usea..s<iAsisin Z)and T' = T a.s. (because {T < t} = | J;eq.se {T < s} is
a.s.equalto {T" < ¢}, forall teR,). O

§ 1c. The Optional o-Field
Here again, the stochastic basis (2, #, F. P) is fixed.

1.20 Definition. 2) A process X is adapted to the filtration F (or, in short,
adapted) if X, is #,-measurable for every teR,.

b) The optional o-field is the o-field ® on Q x R, that is generated by all
cadlag adapted processes (considered as mappings on Q x R.). 1

A process or a random set that is @-measurable is called optional.

1.21 Proposition. Let X be an optional process. When considered as a mapping
on Q2 x Ry, itis F @ R,-measurable. Moreover, if T is a stopping time, then

a) Xrlr<u) is Fr-measurable (hence, X is adapted).

b) the stopped process X7 is also optional.

Proof. The set of all processes that are # ® %, -measurable and meet (a) and (b)
for all stopping times is obviously a vector lattice and is stable under pointwise
convergence. Thus, by Definition 1.20 and a monotone class argument, it is

enough to prove that every cadlag adapted process X satisfies the claimed

properties.

If ne N* we define a new process X" by putting X7 = X, ,. for te[(k — 1)/2",
k/2"), where ke N*, Since

{Xx"eB} = | [{w: X, pn(w)€ B} x l:%l,%)}
keN*

we have {X"e B} e # ® &, for all Borel sets B, hence X"is # & & -measurable.
Since X is cad, the sequence (X™) converges pointwise to X, which therefore is
also & ® 4. -measurable.

Let T be a stopping time, and put T, = co on the set {T = oo} and T, = k/2"
on the set {(k — 1)/2" < T < k/2"}. Each T, is obviously a stopping time, and the
sequence (7;,) decreases to T. Since
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(Xr eB}N{T, <t} = U [{Xy2neB) T, = k/2"}]
ke N* k2n<e
is in %, we obtain that Xy, 1.7, ., is #7, -measurable. Since X is cad, Xy, Lz <.
converges to Xy 1yr. ). Thus it follows from 1.18 that X lyr<n) IS Fr-measurable
and we have (a). Finally X7 is also cadliag by construction, and since X7
Xloer + Xrhrg it follows from what precedes that X7 is adapted: therefore
it is optional, and we have (b). 0

There exists a characterization of the optional o-ficld that differs from the
definition 1.20 and gives some insight for this notion. To this effect, let us first
introduce what a stochastic interval is: if §, T are two stopping times, one may
define four kinds of stochastic intervals, that are the following four random sets:

[S,T] = {(w,1): teR,, S() <t < T(w))
IS.T[ = {(w, 8): te Ry, S(w) < t < T}
18, T] = {(@,): teR,, S(w) < ¢ < T(w)}
1S. T = {{w,1): te R, S(w) < t < T(w)}.

Instead of [T, T], we write [ T]: that is, [ T'] is the restriction of the graph of the
mapping T: 2 — R,, to the set @ x R_, and we abuse the terminology by calling
[T] the graph of the stopping time T.

The process 1y, 7 is cadldg, and is obviously adapted if and only if T is a
stopping time; then by 1.20 we have [0, T[ & 0 for each stopping time T. More
generally:

1.23  Proposition. If S, T are two stopping times and if Y is an Fg-measurable
random variable, the four processes Y 115 11, Y15, 11> Y 1y5.79, Y 1}, rf are optional.
Proof. 1t is enough to prove the result when Y is the indicator function of a set
" Ae F5. Let us consider for example X = 1,145 7). Then X is the pointwise limit
of X" = 1,15 1, Where S, =S + I/nand T, = T + 1/n. X" is cadlag by con-
struction and, using 1.17 and the fact that Ae %5 = %5, we check that X" is
adapted: hence X" is optional, and thus so is X. The proof for the other kinds of
stochastic intervals is the same. O

1.24 Proposition. Every process X that is cdg and adapted is optional.
Proof. For each ne N* define a new process X" by

n _
X" = Z Xklz"l[k/zn.(kﬂ)/zr-[-
kelN

Proposition 1.23 yields that X" is optional. Since X is cag, the sequence (X")
converges pointwise to X, hence X is optional, O
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If X is a cidlig adapted process. it is obvious that X _ is also adapted: hence
it follows from 1.24 that:

1.25 Corollary. If X is a cadlag adapted process, the two processes X _ and 4AX
are optional (recall that 4X = X — X_).

126 Remark. One may also prove the following, stronger, results, which will
not be used in this book:

(a) Any cad adapted process is optional;

(b) the o-field @ is generated by the stochastic intervals [O, T, where T is
any stopping time. O

Next we study hitting times. Firstly, we have a fairly general (and difficult)
result, due to Hunt; although it will not be used in this book, we recall it (without
proof: see e.g. [33]) because of its theoretical importance.

1.27 Theorem. If A is an optional random set, its début T(w) = inf(t: (0,t) € 4)
is a stopping time relative to the completed filtration F* introduced in 1.4 (or,
equivalently, is a. s. equal to a stopping time of the original filtration ¥, by Lemma
1.19).

In particular if X is an Ré-valued optional process and if B is a Borel subset
of R, then T = inf(t: X,e B) is a stopping time of the completed filtration F?
(apply 1.27 to the optional random set A = {X e B}).

As for us, instead of using the full force of this result, we shall only use a very
particular and easy case, namely

1.28 Proposition. a) If X is an R*valued adapted cad process and if B is an open
subset of RY, then T = inf(t: X,e B) is a stopping time.

b) If X is an R-valued adapted cad process with nondecreasing paths and if
acR, then T = inf(t: X, > a) is a stopping time.

(Here there is no need to complete the filtration, unlike in 1.27).

Proof. a) Since B is open and X is cad, we have

{T<t= ) {X.eB}

seQ.,s<t
and since X is adapted, the right-hand side above is in &, so the result follows
from 1.16.
b) When X is non-decreasing and cad, then {T <t} = {X, > a}, which be-
longs to &, because X is adapted: hence the result. d

We end this paragraph by some easy results on the structure of the jumps of
a cadlag adapted process.
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.30 Definition. A random set A is called thin if it is of the form A4 = { [T, ].
where (T,) is a sequence of stopping times; if moreover the sequence (T,) satisfies
IT,1N[T,] = & forall n # m, it is called an exhausting sequence for A. O

Of course a thin set is optional and all its sections {¢: {w, 7)€ A} are at most
countable; conversely one may prove that any optional set whose sections are at
most countable is thin in the sense of 1.30; this is a difficult result, that will not
be used here (see [33]).

1.31 Lemma. Any thin random set admits an exhausting sequence of stopping
times.

Proof. Let 4 = | J[T,], where (T;),n is a sequence of stopping times. The set
C, = ﬂos.,,,s,,_, {T, # T,} is in &by 1.17, hence 1.15 implies that S, = (T,)c,
is a stopping time: the sequence (S,) is thus an exhausting sequence for 4. O3

1.32 Propesition. If X is a cadldg adapted process, the random set {4X # 0} is
thin; an exhausting sequence for this set {4X # 0} is called a sequence that
exhausts the jumps of X.

Proof. Let ne N*, Put S(n,0) = 0 and define by induction
S(n,p + 1) = inf(t > S(n,p): 1 X, — Xs@pl > 27"
Then for n, p fixed we have S(n,p + 1) = inf(¢: [ ¥;| > 27"), where
Y=(X- Xsw.m)l[s(n,m.wﬁ

fmd Y is a cadlag adapted process (use 1.23). Hence we deduce from 1.28 that S(n, p)
is a stopping time. Moreover 1.21 and 1.25 yield that A(n,p} = {S(n,p) < oo,
AXS(,,:,,, # 0} is in %, ,, hence by 1.15 each T(n,p) = S(n,p)y., i also a
stopping time. Now, since X is cidlag we obviously have: lim 4, T S(n,p) =
and it easily follows that {4X # 0} = (), ,cn+[T(n, p)], hence the result. [

§ 1d. The Localization Procedure
In this short subsection, we describe a procedure that is used over and over.

1.33  Definition. If ¢ is a class of processes, we denote by %, the localized class,
defined as such: a process X belongs to %, if and only if there exists an increasing
sequence (T,) of stopping times (depending on X) such that lim,, T, = co a.s. and

that .ez‘lch stopped process X belongs to %. The sequence (T;) is called a
localizing sequence for X (relative to %), O
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For instance. if % is the class of all bounded processes, Gy, is the class of the
so-called locally bounded processes. If we may anticipate on the next paragraph,
if € is the class of all submartingales, %), will be the class of the so-called local
submartingales.

Of course, 6 < %,,.. The localization is most useful for the classes that satisfy
the following property (all the classes of processes encountered in this book will
satisfy the next property!)

1.34 Definition. A class % of processes is called stable under stopping if for any
X €% and any stopping time T, the stopped proced XT belongs to %. d

135 Lemma. Let @ and €’ be two classes of processes, that are stable under
stopping. Then

(a) % is stable under stopping, and (%,,.)i0c = Gioc-

B (BNE hoe = Groc N Bloc-

Proof. (a) That 6, is stable under stopping is trivial. Let X € (%iochoc, and (7,,) be
a localizing sequence such that X ™ e %,,. For each ne N there exists a localizing
sequence (T(n, p)), < n Such that (X T.yTP) e @ and there exists an integer p, such
that P(T(n,p,) < T, Am} <27

Put S, = T, A [/\mzs T(m, p,)]. Each S, is a stopping time and since the
sequence (T,) is increasing, then so is the sequence (S,). One has:

PS,<T,Anm< Y P(Tmp,)<T,An)

m=>n
= mz>n P(T(m, pm) < Tm " m) = m};‘,. "= 2—("—1)_

Because lim,, T, = oo a.s., it follows that lim, S, = 0 a.s,, and (S,)is a localizing
sequence. Now,

X5~ = (( XTn)T(n.p,‘))S,.

and, since % is stable under stopping, it follows that X Sne%. Hence X € Gyoc-

(b) The inclusion (€ N )oe © Groc N Bl 18 trivial. Conversely, let X €%, N
%,,., and let (T,) and (T;;) be two localizing sequences such that X Tne % and that
XTe%'.PutS, = T, A T,. The sequence (S,) is increasing and lim, §, = «© a.s;
since % and @’ are stable under stopping, X5 = (X™)7 e ¢ and similarly X5~ ®".
Therefore X (€ N % hoe- O

The first property above means that one cannot iterate the localization
procedure and obtain larger and larger classes of processes. Typically, the previ-
ous lemma is set to work in the following sort of situation:

“Theorem”. Let %, ¢, " be three classes that are stable under stopping; associate
to each X € %,,. N %,,. another process Y = a(X), with the property that a(XT) =

loc
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(2{X)T for every stopping time. Then if x(X) e %, forall X e 2 1 %", we also have
2w X)e %, forall X e%,.N%,..

“Method of Proof™: Apply 1.35. In a “real” proof, when we encounter a
situation of this type we write the ritual sentence: by localization, we may assume
that Xe€0N¥E'.

§ le. Martingales

In this subsection we review a number of properties of martingales, submartin-
gales and supermartingales, that are essentially due to Doob. They are stated
without proof (except for the final property), the proofs may be found in most
standard books (see e.g. [33], [43]).

1.36 Definition. A martingale (resp. submartingale, resp. supermartingale) is an
adapted process X on the basis (2, #,F, P), whose P-almost all paths are cadldg,
such that every X, is integrable, and that for s < ¢:

X, = E(X,|#) (resp. X, < E(X,| %)), resp. X; = E(X,|%)). O

1.37 Remark. We somehow depart from standard conventions in this definition;
namely, the stochastic basis is not assumed to be complete. Nevertheless, the
subsequent properties are true, as the reader will check by himself (it is very
easy), thanks to the following: if X is a submartingale on the complete basis
(Q, #F,FF, P), there exists a process X', P-indistinguishable from X, adapted to
the (uncomplete) filtration F, and also an F-stopping time T, such that for all ®
the path X (w) is cad everywhere and lad everywhere except at T(w), and more-
over P(T < o0} =0. O

1.38 Wesay that a process X admits a terminal variable X, if X, converges a.s.
to a limit X, as t T oo; in such a case, the variable X7 is (a. s.) well defined for any
- stopping time T, with X1 = X, on {T = oo}. O

1.39 Theorem. Let X be a supermartingale such that there exists an integrable
random variable Y with X, > E(Y|%,) for all te R... Then

a) (Doob’s limit Theorem) X, converges a.s. to a finite limit X_.

b) (Doob’s stopping Theorem) If S, T are two stopping times, the random
variables X5 and Xy are integrable, and X > E(X1|%s) on the set {S< T}. In
particular, X" is again a supermartingale.

Now we introduce the two following classes of martingales:
1.40 Definition. We denote by .# the class of all uniformly integrable martin-

gales, that is of all martingales X such that the family of random variables
(X e, is uniformly integrable. 0
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1.41 Definition. We denote by .#2 the class of all square-integrable marrtingales,
that is of all martingales X such that sup,.p_ E(X;) < cc. O

We obviously have #* < .#. The following theorem will imply that both .4
and .#2 are stable under stopping.

1.42 Theorem. a) If X is a uniformly integrable martingale, then X, converges
a.s.and in L' to a terminal variable X, and X = E(X | ;) for all stopping times
T. Moreover, X is square-integrable if and only if X, is square-integrable, in which
case the convergence X, — X, also takes place in L*.

b) If Y is an integrable random variable, there exists a uniformly integrable
martingale X, and only one up to an evanescent set, such that X, = E(Y|%,) for all
teR,; moreover, X, = E(Y|F,-).

(Observe that no completion of the filtration is needed here).
1.43 Theorem (Doob’s inequality). If X is a square-integrable martingale,

E(sup X,z) < 4 sup E(X?2) = 4E(X2).

teR. te Ry
Here is another, very useful, characterization of the elements of ./#:

144 Lemma. Let X be an adapted cadlag process, with a terminal random
variable X, Then X is a uniformly integrable martingale if and only if for each
stopping time T, the variable Xy is integrable and satisfies E(X7) = E(X,).

Proof. The necessary condition comes immediately from 1.42. To prove the
sufficient condition, we remark first that X, is integrable by hypothesis. Then if
teR, and A€ %, we define the stopping time T by T=t on A and T = ©
on the complement A°. We have E(X;) = E(X,1,) + E(X,1s) and E(X) =
E{X, 1) + E(X 1,). Our assumption implies that E(X7)= E(X,), hence
“£(X,1,) = E(X,,1,) by difference. This being true for ail A€ #, it follows that
X, = E(X|%,). Then one easily deduce that X ¢ .# from 1.42. a

1.45 Definition. A local martingale (resp. a locally square-integrable martingale)
is a process that belongs to the localized class .#,,. (resp. H#,) constructed from
M (resp. #?) via 1.33. |

1.46 Definition. A process X is of class (D) if the set of random variables {Xr:
T finite-valued stopping time} is uniformly integrable. O

1.47 Proposition. a) Each martingale is a local martingale (hence, .#,,. is also
the localized class obtained via 1.33 from the class of martingales).
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b) Each uniformly integrable martingale is a process of class (D).
c) A local martingale is a uniformly integrable martingale if and only if it is a
process of class (D).

Proof. ) Let X be a martingale, and put T, = n. Then X = E(X,| %) for all
teR, and 1.42 implics that XT»e. 4.

b) The statement follows from 1.42 and from the well-known fact that if
Ye LY, the set of random variables { E(Y|%): ¢ any sub-g-field of #} is uniformly
integrable.

c) Only the sufficient condition remains to be proved. Let X €.4,, be of class
(D), and let (T;) be a localizing sequence for X. If s < ¢,

(1) X a1, = X" = EX["|F) = E(X, 1| F).

The two sequences (X, a1, )sen a0d (X 17, )acn are uniformly integrable because
X is of class (D), and they converge to X, and X, a.s. respectively because
lim,, T, = oo a.s. Hence the convergence is also in L', and so it passes through
the conditional expectation in (1), which thus yields X; = E(X,|#)and X is a
martingale. At last, since X is of class (D), it is a-fortiori uniformly integrable. [

We end this paragraph by showing, through two examples, the differences
between a uniformly integrable martingale, a martingale, and a local martingale.

1.48 Example. Let (Z,), n+ be a sequence of iid. random variables with
P(Z,=1)=P(Z,=—1)=1/2. Put F=o0(Z,:peN*p<t) and X, =
Y 1<p<i Zp» Where [¢] denotes the integer part of teR,. Then X is trivially a
martingale, but by the central limit theorem X, does not converge a.s. as ¢ 1 co:
hence X is not uniformly integrable. O

149 Example. Let (4,),.n» be @ measurable partition with P(4,) = 27" and
(Z,)ncn» be a sequence of random variabies that are independent of the 4,’s and
with P(Z, =2") = P(Z, = —2") = 1/2. Put # = o(4,:neN*) if 1[0,1) and
F, = a(A,, Z,-neN*) if te[1, c0). Put

Yn = Z ZpIAP
1<p<n
X = 0 ¥fte[0, 1)
Y, iftefl,c0)
+c0 ontheset () 4,
T, = 1<p<n
0 elsewhere.

(T,) is clearly a sequence of stopping times that increases to + 0. The process
X is equal to O (resp. Y,) on [0,1] (resp. [1,o0[) and Y, is bounded and
independent from the o-field #,_: hence X"™"e.# and X is a local martingale.
However, it is not a martingale, because X, = Y, is not integrable. ]
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§ 1f. The Discrete Case

When the time-set is not R, but N, we have a theory that is similar to the previous
one, although much simpler. We will very briefly sketch this theory and show
how it is connected to the “continuous-time” one.

1. Let us first define what a stochastic basis is, in this setting.

1.50 Definition. A discrete stochastic basis is a probability space (Q, .7, P)
equipped with a filtration ¥ = (#,),.n; here, a filtration means an increasing
family of sub-o-fields of # (1.e. #, = Z, ifn < m). Notice that the right-continuity
has no meaning here. |

A random set is a subset of 2 x N. A process is a family X =(X,),en Of
mappings from £ into some set E, and it can also be viewed as a mapping from
Q x N into E, via:

(@, 1)~ X(w,n) = X, (w).

The notions of cad, cag, or cidlag processes, have no signification here. However,
analoguously to 1.8, to each process X we associate two other processes X_ =
(X,-)and 4X = (4X,) by

st Xo- = Xo, X,_=X,, ifn>1
' AX, =X, — X,_

If X is a process, and T a mapping: Q — Kl, we define the process X7 “stopped
at time T” by XT = X, ,,..

A stopping time T and its associated o-fields %7 and % _ are defined exactly
like in 1.11, except that here T is a mapping: 2 — N and that R, is replaced by
N. The properties 1.13 to 1.18 are of course valid. Moreover, we have the obvious
and useful additional property:

1.52 A mapping T: 2 — N is a stopping time if and only if {T = n} e %, for
each ne N; in this case, a set A€ # belongs to %7 if and only if AN{T = n} e &,
for each ne N. O

The notion of optionality is rather trivial here:

1.53 Definition. The optional o-field is the s-field ©® on Q x N that is generated
by all adapted processes, that is all processes X such that X, is %,-measurable
for each ne N. O

Most of the results of § ¢ have no interesting counterpart in the discrete case.
Let us however mention 1.21 (which is much easier to prove than in the continu-
ous case), 1.25 that is trivial, and 1.27 that is very easy to prove here:
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1.54 Theorem. If 4 is an optional random set, its début T(w) = inf(neN:
(w, n)€ A} is a stopping time (no completion required here).

Proof. The hypothesis means that the process X
follows from the equality:

1, is adapted; hence the result
{(T<n}= U X,=1} O

Finally, the notion of localization, and all the definitions and theorems of §¢
about martingales are valid without changes (except that R, and R, are every-
where replaced by N and N, and of course we can drop the “cadlig” assumption
in Definition 1.36). Note that even in the discrete case we have the three notions
of a uniformly integrable martingale, of a martingale. and of a local martingale,
and the examples 1.48 and 1.49 may easily be translated into the discrete case to
show that a martingale may not be uniformly integrable, or that a local martin-
gale may not be a martingale (see also 1.64 below).

2. Now we wish to show that the discrete case actually reduces to a particular
case of the general one. To this effect, we consider a discrete stochastic basis
B=Q,%F= (%l)neN’P)'

We associate to £ a “continuous” stochastic basis %' as follows:

155 @& =(@QF,F =(F)er,P) with# =F, fortelnn+ 1)

In particular, we have:

1.56 F =%, ifneN, F_=F_, =%, ifneN*

1.57 Lemma. Any #-stopping time T is also a &'-stopping time, and we have
Fi=Frand Fy_ = Fr_.

Proof. For each Ae# we have AN{T <t} = AN{T < n} when {e[n,n + 1)
Hence by 1.56, AN {T < t}e % for all te R, if and only if AN{T < n} e %, for
all ne N: this proves that a #-stopping time T is a #'-stopping time and that
Fr = Fr.

If Ae % and te[n,n + 1), we have Ae £, and AN{t < T} = AN{n < T};
since F, = %,, it proves that #7_ = %;_. The converse inclusion is proved
similarly. O

1.58 Lemma. Let T’ be a #'-stopping time,and put T=nif n<T <n+ 1,
T = o0 if T' = 0. Then T is a #-stopping time and Fr. = Fr, and Fy._ = Fr_
(note that in general we do not have #._ = %;_; the proof, which is similar to
that of 1.57, is left to the reader).

Now, let X be a process on #. We associate to it a process X’ on %’ as follows:

1.59 ' X =X, iftefn,n+1).
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Note that X’ is cadlig, and the following statements are obvious:
1.60 X is .#-adapted if and only if X" is .#"-adapted.
1.61 If Tand T’ are like in 1.58, we have (X7) = X'T.
1.62 The process X is of class (D) on 4 if and only if X" is of class (D) on £".

163 The process X is a martingale (resp. a supermartingale, resp. a uniformly
integrable martingale, resp. a local martingale) on # if and only if X’ is a
martingale (resp. a supermartingale, resp. a uniformly integrable martingale,
resp. a local martingale) on %',

These facts show why the discrete case is indeed “included” within the
continuous one. For instance, 1.60 and the property of the process X' given by
1.59 to be automatically cadlag explain why “optional” and “adapted” mean the
same thing on the basis %"

3. Hereis an exception to what we just wrote above: the following does not easily
reduce to a property in continuous time.

1.64 Proposition. Let X be an adapted process on #. Then X is a local martingale,
if and only if:

(i) X, is integrable, and

(ii) for all ne N*, E(| X, || #,-1) < o a.s. and E(X,|#,;) = X,

Remember that E(:]|%,_,) is the “extended” conditional expectation. So in
(ii) the fact that E(X,|%,-,) = X,_, automatically implies that E(X,||#_) < ©
(for clarity, we prefer to explicitely state the two conditions). But E(X,|#,-} =
X,_, does not imply that X, is integrable; indeed, integrability for all X, plus
E(X,|#,-,) = X,_, for ne N* are necessary and sufficient for X to be a martingale.

Proof. a) Necessary condition: Let (T,) be a localizing sequence of stopping times
for the local martingale X. Then X, = X{~ is integrable, and E(X[|#,_,) = X},
for all pe N*: therefore E(X,|#,_,) = X,_, on the #,_,-measurable set {T,>
p — 1}, and since | J,{T, > p — 1} = Q we obtain (ii).

b) Sufficient condition: Assume (i) and (ii) and set T, = inf(p: Y k<ot
E(|X,||%._,) = n). Then {T, > p} clearly belongs to #,_,, hence T, is a stopping
time. Moreover,

E(| X)) = E(1 X7 A,)) S E(IXol) t n < ©

and (i) yields E(X™|%,_,) = XJ», because {T, > p}€#,,. Hence X™is a
martingale, and X is a local martingale because T, T «c asn T co by (ii) again. O



