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AN INTRODUCTION TO PARTIAL DIFFERENTIAL
EQUATIONS

A complete introduction to partial differential equations, this textbook provides a
rigorous yet accessible guide to students in mathematics, physics and engineering.
The presentation is lively and up to date, with particular emphasis on developing
an appreciation of underlying mathematical theory.

Beginning with basic definitions, properties and derivations of some fundamental
equations of mathematical physics from basic principles, the book studies first-order
equations, the classification of second-order equations, and the one-dimensional
wave equation. Two chapters are devoted to the separation of variables, whilst
others concentrate on a wide range of topics including elliptic theory, Green’s
functions, variational and numerical methods.

A rich collection of worked examples and exercises accompany the text, along
with a large number of illustrations and graphs to provide insight into the numerical
examples.

Solutions and hints to selected exercises are included for students whilst extended
solution sets are available to lecturers from solutions@cambridge.org.
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Preface

This book presents an introduction to the theory and applications of partial dif-
ferential equations (PDEs). The book is suitable for all types of basic courses on
PDEs, including courses for undergraduate engineering, sciences and mathematics
students, and for first-year graduate courses as well.

Having taught courses on PDEs for many years to varied groups of students from
engineering, science and mathematics departments, we felt the need for a textbook
that is concise, clear, motivated by real examples and mathematically rigorous. We
therefore wrote a book that covers the foundations of the theory of PDEs. This
theory has been developed over the last 250 years to solve the most fundamental
problems in engineering, physics and other sciences. Therefore we think that one
should not treat PDEs as an abstract mathematical discipline; rather it is a field that
is closely related to real-world problems. For this reason we strongly emphasize
throughout the book the relevance of every bit of theory and every practical tool
to some specific application. At the same time, we think that the modern engineer
or scientist should understand the basics of PDE theory when attempting to solve
specific problems that arise in applications. Therefore we took great care to create
a balanced exposition of the theoretical and applied facets of PDEs.

The book is flexible enough to serve as a textbook or a self-study book for a large
class of readers. The first seven chapters include the core of a typical one-semester
course. In fact, they also include advanced material that can be used in a graduate
course. Chapters 9 and 11 include additional material that together with the first
seven chapters fits into a typical curriculum of a two-semester course. In addition,
Chapters 8 and 10 contain advanced material on Green’s functions and the calculus
of variations. The book covers all the classical subjects, such as the separation of
variables technique and Fourier’s method (Chapters 5, 6, 7, and 9), the method of
characteristics (Chapters 2 and 9), and Green’s function methods (Chapter 8). At
the same time we introduce the basic theorems that guarantee that the problem at
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Xii Preface

hand is well defined (Chapters 2—10), and we took care to include modern ideas
such as variational methods (Chapter 10) and numerical methods (Chapter 11).

The first eight chapters mainly discuss PDEs in two independent variables.
Chapter 9 shows how the methods of the first eight chapters are extended and
enhanced to handle PDEs in higher dimensions. Generalized and weak solutions
are presented in many parts of the book.

Throughout the book we illustrate the mathematical ideas and techniques by
applying them to a large variety of practical problems, including heat conduction,
wave propagation, acoustics, optics, solid and fluid mechanics, quantum mechanics,
communication, image processing, musical instruments, and traffic flow.

We believe that the best way to grasp a new theory is by considering examples
and solving problems. Therefore the book contains hundreds of examples and
problems, most of them at least partially solved. Extended solutions to the problems
are available for course instructors using the book from solutions@cambridge.org.
We also include dozens of drawing and graphs to explain the text better and to
demonstrate visually some of the special features of certain solutions.

It is assumed that the reader is familiar with the calculus of functions in several
variables, with linear algebra and with the basics of ordinary differential equations.
The book is almost entirely self-contained, and in the very few places where we
cannot go into details, a reference is provided.

The book is the culmination of a slow evolutionary process. We wrote it during
several years, and kept changing and adding material in light of our experience in
the classroom. The current text is an expanded version of a book in Hebrew that the
authors published in 2001, which has been used successfully at Israeli universities
and colleges since then.

Our cumulative expertise of over 30 years of teaching PDEs at several univer-
sities, including Stanford University, UCLA, Indiana University and the Technion
— Israel Institute of Technology guided to us to create a text that enhances not just
technical competence but also deep understanding of PDEs. We are grateful to our
many students at these universities with whom we had the pleasure of studying this
fascinating subject. We hope that the readers will also learn to enjoy it.

We gratefully acknowledge the help we received from a number of individuals.
Kristian Jenssen from North Carolina State University, Lydia Peres and Tiferet
Saadon from the Technion —Israel Institute of Technology, and Peter Sternberg from
Indiana University read portions of the draft and made numerous comments and
suggestions for improvement. Raya Rubinstein prepared the drawings, while Yishai
Pinchover and Aviad Rubinstein assisted with the graphs. Despite our best efforts,
we surely did not discover all the mistakes in the draft. Therefore we encourage
observant readers to send us their comments at pincho@techunix.technion.ac.il.
We will maintain a webpage with a list of errata at http://www.math.technion.ac
.il/~pincho/PDE.pdf.
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Introduction

1.1 Preliminaries

A partial differential equation (PDE) describes a relation between an unknown
function and its partial derivatives. PDEs appear frequently in all areas of physics
and engineering. Moreover, in recent years we have seen a dramatic increase in the
use of PDEs in areas such as biology, chemistry, computer sciences (particularly in
relation to image processing and graphics) and in economics (finance). In fact, in
each area where there is an interaction between a number of independent variables,
we attempt to define functions in these variables and to model a variety of processes
by constructing equations for these functions. When the value of the unknown
function(s) at a certain point depends only on what happens in the vicinity of this
point, we shall, in general, obtain a PDE. The general form of a PDE for a function
uxy, xo, ..., x,)1s

F(Xl7'x29 LR 'sxn’uv M,\']’M,\'zv -"7u.Y]|9 "') = 07 (1'1)

where xy, x3, ..., x, are the independent variables, u# is the unknown function,
and u,, denotes the partial derivative du/dx;. The equation is, in general, sup-
plemented by additional conditions such as initial conditions (as we have of-
ten seen in the theory of ordinary differential equations (ODEs)) or boundary
conditions.

The analysis of PDEs has many facets. The classical approach that dominated
the nineteenth century was to develop methods for finding explicit solutions. Be-
cause of the immense importance of PDEs in the different branches of physics,
every mathematical development that enabled a solution of a new class of PDEs
was accompanied by significant progress in physics. Thus, the method of charac-
teristics invented by Hamilton led to major advances in optics and in analytical
mechanics. The Fourier method enabled the solution of heat transfer and wave
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propagation, and Green’s method was instrumental in the development of the theory
of electromagnetism. The most dramatic progress in PDEs has been achieved in
the last 50 years with the introduction of numerical methods that allow the use of
computers to solve PDEs of virtually every kind, in general geometries and under
arbitrary external conditions (at least in theory; in practice there are still a large
number of hurdles to be overcome).

The technical advances were followed by theoretical progress aimed at under-
standing the solution’s structure. The goal is to discover some of the solution’s
properties before actually computing it, and sometimes even without a complete
solution. The theoretical analysis of PDEs is not merely of academic interest, but
rather has many applications. It should be stressed that there exist very complex
equations that cannot be solved even with the aid of supercomputers. All we can
do in these cases is to attempt to obtain qualitative information on the solution. In
addition, a deep important question relates to the formulation of the equation and
its associated side conditions. In general, the equation originates from a model of
a physical or engineering problem. It is not automatically obvious that the model
is indeed consistent in the sense that it leads to a solvable PDE. Furthermore, it
is desired in most cases that the solution will be unique, and that it will be stable
under small perturbations of the data. A theoretical understanding of the equation
enables us to check whether these conditions are satisfied. As we shall see in what
follows, there are many ways to solve PDEs, each way applicable to a certain class
of equations. Therefore it is important to have a thorough analysis of the equation
before (or during) solving it.

The fundamental theoretical question is whether the problem consisting of the
equation and its associated side conditions is well posed. The French mathematician
Jacques Hadamard (1865-1963) coined the notion of well-posedness. According
to his definition, a problem is called well-posed if it satisfies all of the following
criteria

1. Existence The problem has a solution.

2. Uniqueness There is no more than one solution.

3. Stability A small change in the equation or in the side conditions gives rise to a small
change in the solution.

If one or more of the conditions above does not hold, we say that the problem is
ill-posed. One can fairly say that the fundamental problems of mathematical physics
are all well-posed. However, in certain engineering applications we might tackle
problems that are ill-posed. In practice, such problems are unsolvable. Therefore,
when we face an ill-posed problem, the first step should be to modify it appropriately
in order to render it well-posed.
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1.2 Classification

We pointed out in the previous section that PDEs are often classified into different
types. In fact, there exist several such classifications. Some of them will be de-
scribed here. Other important classifications will be described in Chapter 3 and in
Chapter 9.

* The order of an equation
The first classification is according to the order of the equation. The order is defined to be
the order of the highest derivative in the equation. If the highest derivative is of order k, then
the equation is said to be of order k. Thus, for example, the equation u,, — u,, = f(x,t)
is called a second-order equation, while u, + 1,y = 0 is called a fourth-order equation.

* Linear equations
Another classification is into two groups: linear versus nonlinear equations. An equation is
called linear ifin (1.1), F is alinear function of the unknown function u and its derivatives.
Thus, for example, the equation x”u, + ¢ y + sin(x? + y?)u = x3 is a linear equation,
while u2 + ui =1 is a nonlinear equation. The nonlinear equations are often further
classified into subclasses according to the type of the nonlinearity. Generally speaking,
the nonlinearity is more pronounced when it appears in a higher derivative. For example,
the following two equations are both nonlinear:

Uy + Uyy = U, (1.2)
Ury +Uyy = |Vul®u. (1.3)

Here |Vu| denotes the norm of the gradient of . While (1.3) is nonlinear, it is still linear
as a function of the highest-order derivative. Such a nonlinearity is called quasilinear. On
the other hand in (1.2) the nonlinearity is only in the unknown function. Such equations
are often called semilinear.

* Scalar equations versus systems of equations
A single PDE with just one unknown function is called a scalar equation. In contrast, a
set of m equations with / unknown functions is called a system of m equations.

1.3 Differential operators and the superposition principle

A function has to be & times differentiable in order to be a solution of an equation
of order k. For this purpose we define the set C¥(D) to be the set of all functions
that are k times continuously differentiable in D. In particular, we denote the set
of continuous functions in D by C%(D), or C(D). A function in the set C* that
satisfies a PDE of order k, will be called a classical (or strong) solution of the
PDE. It should be stressed that we sometimes also have to deal with solutions that
are not classical. Such solutions are called weak solutions. The possibility of weak
solutions and their physical meaning will be discussed on several occasions later,
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see for example Sections 2.7 and 10.2. Note also that, in general, we are required
to solve a problem that consists of a PDE and associated conditions. In order for
a strong solution of the PDE to also be a strong solution of the full problem, it is
required to satisfy the additional conditions in a smooth way.

Mappings between different function sets are called operators. The operation
of an operator L on a function u will be denoted by L[u]. In particular, we shall
deal in this book with operators defined by partial derivatives of functions. Such
operators, which are in fact mappings between different C* classes, are called
differential operators.

An operator that satisfies a relation of the form

Llajuy + axus] = a;L[u] + a;L[us],

where a; and a, are arbitrary constants, and u; and u, are arbitrary functions is
called a linear operator. A linear differential equation naturally defines a linear
operator: the equation can be expressed as L[u] = f, where L is a linear operator
and f is a given function.

A linear differential equation of the form L[u] = 0, where L is a linear operator,
is called a homogeneous equation. For example, define the operator L = 9%/9x% —
92/dy?. The equation

Llul =uyx —u,, =0

is a homogeneous equation, while the equation

Llul = uyx —uyy = x>
is an example of a nonhomogeneous equation.

Linear operators play a central role in mathematics in general, and in PDE
theory in particular. This results from the important property (which follows at
once from the definition) that if for 1 < i < n, the function u; satisfies the linear
differential equation L[u;] = f;, then the linear combination v := ) _, a;u; sat-
isfies the equation L[v] =Y " & fi. In particular, if each of the functions
up, Uy, ..., u,satisfies the homogeneous equation L [u] = 0, then every linear com-
bination of them satisfies that equation too. This property is called the superposition
principle. It allows the construction of complex solutions through combinations of
simple solutions. In addition, we shall use the superposition principle to prove
uniqueness of solutions to linear PDEs.

1.4 Differential equations as mathematical models

PDEs are woven throughout science and technology. We shall briefly review a
number of canonical equations in different areas of application. The fundamental
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laws of physics provide a mathematical description of nature’s phenomena on a
variety of scales of time and space. Thus, for example, very large scale phenomena
(astronomical scales) are controlled by the laws of gravity. The theory of electro-
magnetism controls the scales involved in many daily activities, while quantum
mechanics is used to describe phenomena on the atomic scale. It turns out, how-
ever, that many important problems involve interaction between a large number
of objects, and thus it is difficult to use the basic laws of physics to describe
them. For example, we do not fall to the floor when we sit on a chair. Why? The
fundamental reason lies in the electric forces between the atoms constituting the
chair. These forces endow the chair with high rigidity. It is clear, though, that it
is not feasible to solve the equations of electromagnetism (Maxwell’s equations)
to describe the interaction between such a vast number of objects. As another
example, consider the flow of a gas. Each molecule obeys Newton’s laws, but
we cannot in practice solve for the evolution of an Avogadro number of individ-
ual molecules. Therefore, it is necessary in many applications to develop simpler
models.

The basic approach towards the derivation of these models is to define new quan-
tities (temperature, pressure, tension,. . .) that describe average macroscopic values
of the fundamental microscopic quantities, to assume several fundamental princi-
ples, such as conservation of mass, conservation of momentum, conservation of
energy, etc., and to apply the new principles to the macroscopic quantities. We shall
often need some additional ad-hoc assumptions to connect different macroscopic
entities. In the optimal case we would like to start from the fundamental laws and
then average them to achieve simpler models. However, it is often very hard to do
so, and, instead, we shall sometimes use experimental observations to supplement
the basic principles. We shall use x, y, z to denote spatial variables, and ¢ to denote
the time variable.

1.4.1 The heat equation

A common way to encourage scientific progress is to confer prizes and awards.
Thus, the French Academy used to set up competitions for its prestigious prizes
by presenting specific problems in mathematics and physics. In 1811 the Academy
chose the problem of heat transfer for its annual prize. The prize was awarded to the
French mathematician Jean Baptiste Joseph Fourier (1768—1830) for two important
contributions. (It is interesting to mention that he was not an active scientist at that
time, but rather the governor of a region in the French Alps — actually a politician!).
He developed, as we shall soon see, an appropriate differential equation, and, in
addition developed, as we shall see in Chapter 5, a novel method for solving this
equation.
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The basic idea that guided Fourier was conservation of energy. For simplicity
we assume that the material density and the heat capacity are constant in space
and time, and we scale them to be 1. We can therefore identify heat energy with
temperature. Let D be a fixed spatial domain, and denote its boundary by 0D.
Under these conditions we shall write down the change in the energy stored in D
between time ¢ and time ¢ 4+ Af:

f [ulx,y,z,t + At) —u(x, y,z,t)]dV
D

t+At t+At 5
= / / q(x,y,z,t,u)dth—/ f B(x,y,z,t)-adSdt, (1.4)
t D t aD

where u is the temperature, g is the rate of heat production in D, B is the heat
flux through the boundary, dV and dS are space and surface integration elements,
respectively, and 7 is a unit vector pointing in the direction of the outward nor-
mal to dD. Notice that the heat production can be negative (a refrigerator, an air
conditioner), as can the heat flux.

In general the heat production is determined by external sources that are inde-
pendent of the temperature. In some cases (such as an air conditioner controlled
by a thermostat) it depends on the temperature itself but not on its derivatives.
Hence we assume g = ¢q(x, y, z, t, u). To determine the functional form of the heat
flux, Fourier used the experimental observation that ‘heat flows from hotter places
to colder places’. Recall from calculus that the direction of maximal growth of a
function is given by its gradient. Therefore, Fourier postulated

B = —k(x,y,2)Vu. (1.5)

The formula (1.5) is called Fourier’s law of heat conduction. The (positive!) function
k is called the heat conduction (or Fourier) coefficient. The value(s) of k depend
on the medium in which the heat diffuses. In a homogeneous domain & is expected
to be constant. The assumptions on the functional dependence of ¢ and B on u are
called constitutive laws.

We substitute our formula for ¢ and B into (1.4), approximate the ¢ integrals
using the mean value theorem, divide both sides of the equation by At, and take
the limit Ar — 0. We obtain

/u,dV:fq(x,y,z,t, u)dV—i—/ k(x,y,z)Vu - #dS. (1.6)
D D aD

Observe that the integration in the second term on the right hand side is over a
different set than in the other terms. Thus we shall use Gauss’ theorem to convert
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the surface integral into a volume integral:
/ [, —q — V- (kVu)ldV =0, (1.7)
D

where V- denotes the divergence operator. The following simple result will be used
several times in the book.

Lemma 1.1 Let h(x, y, z) be a continuous function satisfying fQ h(x,y,z)dV =0
for every domain Q. Then h = 0.

Proof Let us assume to the contrary that there exists a point P = (xo, yo, zg) where
h(P) # 0. Assume without loss of generality that 2(P) > 0. Since /4 is continuous,
there exists a domain (maybe very small) Dy, containing P and € > 0, such that 4 >
€ > 0 at each point in Dg. Therefore f Do hdV > eVol(Dy) > 0 which contradicts
the lemma’s assumption. |

Returning to the energy integral balance (1.7), we notice that it holds for any
domain D. Assuming further that all the functions in the integrand are continuous,
we obtain the PDE

w,=q+V-kVu). (1.8)

In the special (but common) case where the diffusion coefficient is constant, and
there are no heat sources in D itself, we obtain the classical heat equation

u, = kAu, (1.9)

where we use Au to denote the important operator iy, + iy, + u... Observe that
we have assumed that the solution of the heat equation, and even some of its
derivatives are continuous functions, although we have not solved the equation yet.
Therefore, in principle we have to reexamine our assumptions a posteriori. We shall
see examples later in the book in which solutions of a PDE (or their derivatives) are
not continuous. We shall then consider ways to provide a meaning for the seemingly
absurd process of substituting a discontinuous function into a differential equation.
One of the fundamental ways of doing so is to observe that the integral balance
equation (1.6) provides a more fundamental model than the PDE (1.8).

1.4.2 Hydrodynamics and acoustics

Hydrodynamics is the physical theory of fluid motion. Since almost any conceivable
volume of fluid (whether it is a cup of coffee or the Pacific Ocean) contains a
huge number of molecules, it is not feasible to describe the fluid using the law
of electromagnetism or quantum mechanics. Hence, since the eighteenth century



