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Part 1
Large antennas

S. Drabowitch






Chapter 1

Structures—Applications—
Methods

The expression ‘large antennas’ denotes those radiating structures whose
characteristic dimensions are very much greater than the wavelength. This
condition permits highly directive antennas with considerable gain to be
realized, and permits given radiation patterns to be very precisely synthesized.)

These possibilities explain their multiple applications in terrestrial or space
telecommunications, radar and radioastronomy. The same condition, moreover,
means that it is possible to treat problems of electromagnetism posed by such
structures using certain mathematical models whose complexity depends on the
level of precision required: geometric optics, physical optics, vectorial or scalar
models, Kirchhoff’s or Fresnel’s approximations, and asymptotic forms, etc. The
choice of mathematical model to be used depends on the problem to be treated.

In general, the work of the engineer consists firstly of a problem of synthesis:
defining the general structure of an antenna with certain ‘external’ characteristics
imposed in advance, while respecting a set of economic, technological and
mechanical constraints.

In this phase, only the simplest models—geometric optics, scalar waveform
optics—will be used to choose the general structure to meet all these require-
ments and to complete the pre-project phase rapidly.

Following this, the project will require more detailed analysis. The possibilities
presented by numerical calculation allow the use of relatively precise methods,
although the duration of calculation is often the limiting factor. In addition, it is
common for parasitic phenomena, difficult to calculate, to give rise to significant
disturbances in the approximations. An experimental evaluation can sometimes
be made: methods for automatic measurement allow certain data to be recorded
in a digital form, directly usable by the computer.

An important aspect of the engineer’s work lies in the choice of calculation
models in the phases of synthesis and analysis, and in the experimental phase
involved in any study resulting in a practical realization.

(1) For example, an aperture of diameter D and wavelength A can radiate a beam with aperture
0 ~ 4/D radians. Its maximum theoretical gain is (xD/A)* and its polar pattern can be synthesized
with a sampling step A/D.



4 ANTENNAS:. APPLICATIONS
A: Structures and applications

1: Structures

In the choice of a radiating structure for a particular problem, many types of
antenna can be envisaged [1]. Most large antennas, however, are derived from
two main types: focusing systems and arrays.

A focusing system comprises a primary source, generally associated with one
or more reflectors and, sometimes, a dielectric lens, which transform the phase
characteristic of the primary wave and, to a lesser degree, its amplitude
characteristic, so as to give the desired characteristics to the radiation from the
whole unit. An important class of focusing systems is that of rotationally
symmetric (circularly symmetric) systems (Chapter 3), of which the parabolic
reflector and the Cassegrain antenna are important examples (fig. 1). When the
characteristics of radiation are not circularly symmetric, the focusing system
used is, itself, not circularly symmetric: this is the case with offset or doubly
curved reflectors used, for example, in early-warning radars (fig. 2), (Chapter 4.C).

In reception, the focusing system concentrates the energy received from an
incident plane wave in a ‘focal’ zone, in the form of a ‘diffraction pattern’
(Chapter 3.H). It is important to know the structure of this pattern, since its effect
on the radiation at the primary source will determine the overall behaviour of
the system during reception (Chapter 3.I)—its gain factor, noise temperature, etc.

The properties of the primary source evidently play a dominant role in the
system as a whole (Chapter 2). It can perform several functions (transmission,
reception, tracking, polarization, etc.) (fig. 3). Its study is difficult since its
dimensions are not large in terms of the wavelength, so the approximation
methods adopted must be sufficiently precise and must be handled carefully, to
avoid serious errors. It is in this context that the role of experimentation will
often be most important.

An array (Chapter 5) is made up of a group of identical elements, placed on
the nodes of a network with a generally plane and regular mesh of squares or
triangles. The interelement spacing, or ‘step’ of the array, is a fundamental
parameter. The elements are supplied by a feed network which defines an array
excitation, generally with fixed amplitude. The radiation phase of the elements,
however, is controlled by phase shifters usually controlled by computer.

The importance of array antennas lies in the possibility of creating a beam of
radiation that can be oriented in a quasi-instantaneous way. This is obtained by
imposing a constant phase gradient between adjacent array elements, depending
on the direction in which the beam is to point.

Even with the same basic structures, large antennas can have differing
external appearances: a great variety of antennas can be obtained by combining
focusing structures and arrays (figs 4 and 5).

2: External characteristics required for particular applications

The external characteristics are taken here to be the overall properties of an






6 ANTENNAS: APPLICATIONS

antenna, possibly associated with data processing systems. The two important
fields of radar and space telecommunications will be considered as examples.

(a) Radar

1—General points

A radar antenna has as its aim not only the illumination of objects of interest
and reception of the echo, but also the production of an accurate angular
distribution: in this sense, it is an angular information transmission channel and
it will be seen that, from this point of view, the antenna is equivalent to a spatial
filter (Chapter 6.D).

The main qualities required for both reception and transmission are the gain
and also the pattern. In the case of an air-traffic radar with a rotating beam,
for example, a narrow polar pattern would be required in the horizontal
(azimuthal) plane, giving a good resolving power, but in the vertical plane a
particular shape would be required to give a certain degree of ‘elevation
coverage’. This involves the important problem of pattern synthesis (Chapters 4
and 6). In the case of tracking antennas, the narrowness of the beam is, in itself,
insufficient to determine the direction of targets precisely enough: to this end
multiple angular interpolations, either simultaneous (monopulse) or successive
(conical scanning), have been developed (Chapter 4.B).

These methods show the angular pointing error by tracking curves, the slope
and linearity of which are essential characteristics."

In all systems, the aim is to avoid parasitic echoes (clutter) and interference,
whether natural or artificial, active or passive, by demanding that the sidelobe
levels should be very low.

The echoes produced by clouds and rain can be eliminated to a large extent,
through the use of circular polarization. In fact, obstacles with circular
symmetry, such as water drops, reverse the sense of the circular polarization on
reflection. This is not generally the case with wanted echoes (aircraft) which, as a
result of their complex geometry, often depolarize the echo wave (see page 83). It
is this depolarized component which is detected by a circular polarization radar:
the ellipticity ratio of the antenna, therefore, is a measure of the quality of the
radar from this point of view.

A number of specific points are made below on various types of radar
antennas.

2—Polar diagram in the vertical plane
Consider a target of equivalent cross-section ¢ and altitude h. Its elevation § and
range r with respect to the radian are related by:
h
r=——
sin

(1) These methods constitute simple examples in which the directive properties of the antenna are
observed as part of a signal processing system.



