T P iy g—
B v
s A
= z ——
e e e
i . ~

e
o P

DB SRARIEEREE

B ATVER 1F itk

— CiEESLEMIRME
HEDH)

FUNDAMENTALS OF
EMBEDDED SOFTWARE

Where C and Assembly Meet
B Daniel W. Lewis

PEARSON

o —

ntice
Hall

-
-~
. \;‘:;
>

-
o
A3
o
—
~,

SMEFE BB F EBAR R HFRH

R ATV 24

— CiES5LHEmE
(22ENRR)
FUNDAMENTALS OF EMBEDDED

Fhi A

Where C and Assgmb
Daniel W. [ewis ﬁ:
PEARSON ﬁ ~ E
Prentice . i i
Hall

W =S whmat

E=: 01-2003-8318 S

Fundamentals of Embedded Software: Where C and Assembly Meet
Daniel W. Lewis

AHHHWF Pearson Education (FAEHE HRER) BB inE. THREEIEHE.

English reprint edition copyright ©2004 by PEARSON EDUCATION ASIA LIMITED and HIGHER
EDUCATION PRESS. (Fundamentals of Embedded Software: Where C and Assembly Meet from Pearson
Education’s edition of the Work)

Fundamentals of Embedded Software: Where C and Assembly Meet by Daniel W. Lewis, Copyright
©2002.
All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Prentice Hall,
Inc.

This edition is authorized for sale only in the People’s Republic of China (excluding the Special
Administrative Regions of Hong Kong and Macao).

JF AR ISBN: 0-13-061589-7
For sale and distribution in the People’s Republic of China exclusively
(except Taiwan, Hong Kong SAR and Macao SAR).

NRTFPEANRFENELRN ﬂ‘@.ﬁ‘l’@ﬁ% RITFHTEX
AP EEEBX) HERIT.

BHBEMEE (C1P) 8\

BARKEER: CiIES 5L BA = Fundamental
s of Embedded Software: Where C and Assembl Mee
t/ () NG (Lewis,D.W.). —EHIZX, —3"3
o SEHE AL, 2004.8

ISBN 7-04-014059-4

T.#... OT.x... N.BEFE—BEFEKE—H
M—#X . ’I‘P311 52

P E A B1E CIP IR TF (2004) 55 065485 5

HREIT BSHE N BPHRLLE 010 — 64054588

it JEETHERXENAE S HEMAF 8008100598
BEECAREE 100011 #t http: / www. hep. edu.en
S Hl 010- 82028899 http: // www. hep. com. cn
2 ¥ FEBELERGHR

Ep B dtEIARSCERRIT :

¥ Z 787x1092 1/16 B & 20044ES AFE1AR

Ep ¥ 18 Bl % 20044E 8 A8 1 REIR
¥ 340000 = # 35.00 TT(HHER)

BRI, BB RSR RS, FWEBHESIIRAR R,
IBARFTH MR

Preface

How many computers are in your home? Most people might answer two or three. How
many microprocessors are in your home? Think carefully before you answer. (Hint: It’s
a lot more than two or three! In fact, it’s actually even a lot more than 10 or 20!) Today,
microprocessors are embedded in almost every electronic appliance you can think of and
many that you probably wouldn’t. They have become pervasive—not only in our home,
but in our workplace, our automobiles, airplanes, stoplights, supermarkets, cell phones—
in short, in almost every aspect of our lives.

Embedded systems offer students an exciting opportunity to express their
creativity. What student hasn’t dreamed of designing the next new gadget that would
capture the imagination of the public? Our challenge as educators is to capitalize on
that excitement and channel the energy of those young minds to motivate mastery of a
subject matter!

Objectives

The ultimate goal of this text is to lay a foundation that supports the multithreaded style
of programming and high-reliability requirements of embedded software. Within this
context, the following objectives were established:

L. To understand how data is represented at the machine level and to appreciate
the consequences and limitations of those representations.

2. To master those language-specific features that are used most frequently in
embedded systems, such as bit manipulation and variant access.

3. To obtain a programmer’s view of processor architecture and how programming
at the level of assembly is sometimes necessary or appropriate.

4. To learn about the various styles of I/O programming and, ultimately, how an
event-driven approach allows one to separate data processing into a number of
independent threads of computation.

5. To learn about nonpreemptive and preemptive multithreaded programming,
shared resources and critical sections, and how scheduling can be used to
manage system response time.

*6. To reinforce basic programming skills by revisiting such topics as scope,
parameter passing, recursion, and memory allocation.

7. To learn about the problems associated with shared memory objects, how shared
memory is affected by memory allocation, and what programming practices can
be used to minimize the occurrence of shared memory.

xiii

xiv Preface

Intended Audience

This text is intended to serve as the basis for a sophomore-level course in a computer
science, computer engineering, or electrical engineering curriculum. Such a course is
envisioned as a replacement for the traditional course on computer organization and
assembly language programming.

The text presents assembly the way it is most commonly used in practice—to
implement small, fast, or special-purpose routines called from a main program written
in a high-level language such as C. It thus covers processor organization and assembly
language only from a “need-to-know” point of view, rather than as a primary objective.
This approach affords time within both the text and the course to cover assembly in
the context of embedded software. As a result, students not only learn that assembly
still has an important role to play, but their discovery of multithreaded programming,
preemptive and nonpreemptive systems, shared resources, and scheduling helps sustain
their interest, feeds their curiosity, and strengthens their preparation for subsequent
courses on operatin’g systems, real-time systems, networking, and microprocessor-
based design.

At most institutions, the introductory programming sequence (CS1, CS2) is no
longer taught in a procedural programming language such as C or Pascal; rather, the
popular approach is to now use an object-oriented programming language such as C++
or Java. Despite the change, it is not uncommon to find one or more upper division
courses still using a procedural language, nor is it uncommon to find such languages still
in use in industry. At the author’s institution, we solved this paradox by redesigning our
traditional assembly-language course around the material in this book; it not only created
room in an already packed curriculum to cover the procedural approach and to introduce
the popular topic of embedded systems, but it has also offered an opportunity to
strengthen student comprehension of parameter passing, scope, and memory allocation
schemes that they were first introduced to in CS1 and CS2.

The text assumes that students already know how to program in C, C++, or Java,
and that the similarity among the low-level syntax of those languages makes it relatively
easy to move to C from either C++ or Java. Rather than covering C in excruciating
detail, the text emphasizes those features of C that are employed more frequently in
embedded applications, and introduces the procedural style through examples and
programming assignments that include large amounts of prewritten source code. In
principle, the only absolute prerequisite is thus a CS1 course that uses C,C++, or Java.
However, additional programming maturity such as acquired from a CS2 course on data
structures is strongly recommended.

Programming Assignments and the CD-Rom

The text is complemented by a collection of programming assignments described in
Appendix D. Given that the text is aimed at sophomores, the assignments are intended
primarily to illustrate a topic from the text, rather than as extended programming
projects. As such, most of the source code for each assignment is provided on the
CD-Rom and students are asked to focus only on those parts that relate directly to

Preface xv

the topic. For example, the last three assignments provide complete source code to
graphically demonstrate problems associated with shared resources, priority inversion,
and deadlock, and require the student to correct these problems by modifying specific
parts of the code by using strategies presented in the text.

The programming assignments and when they should be scheduled relative to
material in the text is summarized as follows:

Programming | Relevant
Assignment Chapter Comment

1 n/a Introduction to C and the DIGPP compiler; requires no
knowledge of material in the text, and may be scheduled during
the first week of the course.

2 2 Fixed-precision real numbers in C.
3 3 Macros and packed operands in C.
4 n/a makefiles: Typically assigned while studying Chapter 4, but has no
direct relationship to that material.
S5and 6 5 Assembly-language programming.
7 6 Interrupt-driven I/O in assembly.
8 7 Multi-threaded programming with a nonpreemptive kernel.
9 7 Preemptive kernels, shared resources, and semaphores.
10and 11 8 Scheduling problems (priority inversion and deadlock).

On the CD-Rom you’ll also find all the software tools needed to develop
embedded applications under Microsoft Windows 9X, 2000 and NT: the DIGPP port of
the gnu C compiler and linker, a compatible assembler and run-time libraries. A boot
loader is provided to load (and execute) the embedded application into memory from
diskette. Where possible, source code for each of these tools has also been included.
Directions for using each of these tools are found at the beginning of Appendix D.

Choice of Platform

The text uses the ubiquitous PC as a platform for learning about processor architecture,
assembly language, and embedded software. Two primary factors motivated this choice:
(1) Students will ultimately encounter the Intel architecture due to its dominance within
the PC market, and (2) choosing to build embedded applications on the PC has the
added benefit of allowing instructors to offer an associated laboratory component
without investing in specialized single board computers.

Most assembly-language programming textbooks for the Intel processor cover the
original “real” mode of the 8088. However, the protected mode of the 386 and later Intel
processors is much more representative of modern architecture and is actually much
easier to program when configured to use a “flat” memory model. Although real mode
is covered briefly in the text, the emphasis is on protected mode and is used in all the of
assembly-language examples.

xvi Preface

One should not construe that a PCis the best (or even an appropriate) platform for
building actual embedded systems. Most embedded applications have no need for many
of the PC’s standard peripherals (e.g., display, keyboard, disk), and the power-on boot
procedure in the ROM BIOS doesn’t even support diskless applications. Trying to write
initialization code to replace the BIOS is difficult at best, because it requires knowledge
of chipset-dependent features that vary from PC to PC and which are often proprietary.

Acknowledgments

This book and the software on the companion CD would not have been possible without
the efforts of a number of people. Of them all, I owe a special thanks to the students and
teaching assistants of COEN 20 at Santa Clara University who suffered through the
rough early versions of the manuscript and helped to debug the libepc library routines.

I also owe a debt of gratitude to many of my colleagues: To Qiang Li and Neil
Quinn, who endured the unenviable task of teaching from my materials and who
graciously suggested a number of improvements to the text. To Hal Brown and Vasu
Alagar, who helped me develop a mathematical representation of fixed-point
multiplication of real numbers that led to an efficient straight-line implementation in
assembly and an explanation of the algorithm in section 2.3.3 that students find
relatively easy to understand. To Darren Atkinson, who spent the better part of two days
in my office tracking down an innocuous little software bug that only appeared when
I upgraded to a more recent version of the compiler. And a hearty thanks to early re-
viewers of my manuscript, whose comments helped to strengthen the final book. They
are Dr. Walter Higgins of Arizona State University, Dr. Karram Mossaad of the Uni-
versity of Texas at Austin, and Dr. Dana Lasher of North Carolina State University.
Special thanks to Dr. Lasher, who contributed the telephone call analogy that appears
in the opening paragraph of section 6.4 on Interrupt-Driven I/O.

We should all be grateful to those unselfish programmers who have created
professional quality software tools and then made them readily available for anyone
to use: To DJ Delorie for his DJGPP port of the GNU C compiler, to Simon Tatham
and Julian Hall for their NASM assembler, to Jean Labrosse for his pC/OS-II pre-
emptive real-time kernel, and to Dennis Saunders of MIX Software for their Multi-C
non-preemptive real-time kernel.

Daniel W. Lewis

Prentice-Hall companion website:
www.prenhall.com/divisions/ems/app/lewis

tH kR % BA

20 AR, DN BERAAREAEERF A REHF. . £5,
FEAXAUEFETRARY. EERFERGRRE R, $5 T HRAEEREE
FlESLE, AFFZERTRT FEHER.

HN2I A, AREERENMAN WTO, EREFYWEGE 4B Emgsl. ®EE
RAEVERE 20 HEXRBTRELE, BEREAERML, RE50E. ZRLE
ERAW, THARKEE. BEREEANKREEMEET LWEFE 48, RAH
HRATEERFEAAAWREORE. SIHEIM ERFREREHEHN, £FE
O FREHNTRIGERRESERE, RETH I mRERAMERENEEEARA
F RIS —BEEHH,

Ad, BERERIEFHTURAELFREERFMEREMGIHRET
. AMRETHAER, —REBGAT, —RERNME. EHSHT B RLFEEH
FEARGAEMERAGENT, 2ILBENHE, F-HERTHEERTARE
W20 ZRGI HHMELEHEEIR. XERMBREZE T BHEE, EbHF R
HRERERFERABEL X ERNEAZ R RE BN FEEREFLENRS
R, RETENEREEHEBARKEN —HAT, TEMBEZRMALEN, 5EH
FXERBEMMY, XEHRMERTE L THENBFEERELWREKER, KA TR
B, RGN, RHBMEFEERL.

HR, HEWREALE 35 FimRESDTEMKELROZER, o2 mRERE
RRFERATNEERRZ —. YREKGERORFEIH, S50 GEFRAKY
WRIARERE, BT HRHENBETX X RGBT R ERE T
MENEBREFRS, EHEARMK, UFEERGERFRBIGEHY.

BNAFLZXEEFA AN REE, S TREREGEERE ERFERGHEKX
P, BAEERFE#KTHEE, mREF-ABRAEGRE L INEREREEHRA
A, BEBRABRERD. Bo RO KW KT oL RN RNGHM B #THER
HEFROELZEDN. BKEH X hep.cs@263.net.

B EHE WA
—OO A

The greatest challenge to writing a book is finding the time, and working on it at
home in the evenings and on weekends often becomes an unavoidable way of life
for several months. Throughout it all my wife and children have been more
understanding, patient, and supporting than I would ever have expected. Thank

you. This book is dedicated to you.

Contents

Preface xiii

Chapter 1 Introduction 1
1.1 Whatis an Embedded System? I
1.2 What'’s Unique About the Design Goals for Embedded Software? 3
1.3 What Does “Real-Time” Mean? 5
1.4 What Does “Multitasking” Mean? 6
1.5 How Powerful Are Embedded Processors? 7
1.6 What Programming Languages Are Used? 7
1.7 WhatIs a “Real-Time Kernel”? - 8
1.8 How Is Building an Embedded Application Unique? 9
1.9 How Big Are Typical Embedded Programs? 11
1.10 The Software Used in This Book 12
Problems 14

Chapter 2 Data Representation 15

2.1 Fixed-Precision Binary Numbers 15
2.1.1 Positional Number Systems 16
2.1.2 Binary-to-Decimal Conversion 17
2.1.3 Decimal-to-Binary Conversion 17
2.1.4 Counting 19
2.1.5 Fixed Precision and Rollover 19
2.1.6 Hexadecimal Representation 20

2.2 Binary Representation of Integers 21
2.2.1 Signed Integers 2!

2.2.2 Positive and Negative Representations of the Same
Magnitude 22

2.2.3 Interpreting the Value of a 2’s-Complement Number 23
2.2.4 More on Range and Overflow 24
2.2.5 2’s Complement and Hardware Complexity 25
2.3 Binary Representation of Real Numbers 28
2.3.1 Fixed-Point Representation 28
2.3.2 Fixed-Point Using a Universal 16.16 Format 30
2.3.3 Fixed-Point Using a Universal 32.32 Format 32
2.3.4 Floating-Point Representation 35

vi

Chapter 3

Chapter 4

Contents

24
25

ASCII Representation of Text 37
Binary-Coded Decimal (BCD) 39

Problems 40

Getting the Most Out of C 43

3.1
32
33
34

35

3.6

3.7

38

Integer Data Types 43

Mixing Data Types 46

Useful Typedefs and Defines 47

Manipulating Bits in Memory 48

3.4.1 Testing Bits 50

3.4.2 Setting, Clearing, and Inverting Bits 51

3.4.3 Extracting Bits 52

3.4.4 Inserting Bits 52

Manipulating Bits in I/O Ports 53

3.5.1 Write-Only I/O Ports 53

3.5.2 Ports Differentiated by Reads Versus Writes 54
3.5.3 Ports Differentiated by Sequential Access 54
3.5.4 Ports Differentiated by Bits in the Written Data 55
Accessing Memory-Mapped 1/O Devices 55

3.6.1 Accessing Data Through a Pointer 55

3.6.2 Arrays, Pointers, and the “Address Of” Operator 56
Structures 58

3.7.1 Packed Structures 59

3.7.2 Bit Fields 60

Variant Access 61

3.8.1 Casting the Address of an Object 61

3.8.2 Using Unions 63

Problems 63

A Programmer’s View of Computer Organization 65

4.1
42

43
44

Memory 65

The Central Processing Unit (CPU) 67

42.1 The Arithmetic and Logic Unit (ALU) 67
422 Other Registers 68

4.2.3 The Control Unit 69

Input/Output (I/O) 70

Introduction to the Intel Architecture 71

4.4.1 Instruction Formats 72

4.4.2 Instruction Operands 73

4.4.3 Operand Restrictions 74

Chapter §

Chapter 6

Contents

44.4 Registers 75
4.4.5 The Stack 77
4.5 The Intel Real Mode Architecture 78
4.5.1 Segmented Addressing 79
4.5.2 Addressing Modes 81
4.6 The Intel Protected Mode Architecture 83
4.6.1 Segment Registers and The Global Descriptor Table 84
4.6.2 The Flat Memory Model 85
4,6.3 Addressing Modes 85
4.7 Operand and Address-Size Override Prefixes 86
4.8 The Intel Data Manipulation Instructions 86
4.8.1 Data Movement, Stack, and I/O Instructions 87
4.8.2 Arithmetic Instructions 89
4.8.3 Bitwise Instructions 91
4.8.4 Shift Instructions 9/
Problems 93

Mixing C and Assembly 96
51 Programmingin Assembly 96
5.2 Register Usage Conventions 98
5.3 Typical Use of Addressing Options 98
5.3.1 Accessing Data Whose Address is a Constant 99
5.3.2 Accessing Data Whose Address is a Variable 100
5.4 Instruction Sequencing 101
5.4.1 Compound Conditionals 102
5.4.2 1f-Then-Else Statements 104
5.4.3 Building Loops 105
5.4.4 Faster Loops with String Instructions 106
5.5 Procedure Call and Return 107
5.6 Parameter Passing 108
5.7 Retrieving Parameters 110
5.8 Everything is Pass by Value 112
5.9 Temporary Variables 112
Problems 115

Input/Output Programming 117

6.1 The Intel /O Instructions 118

6.2 Synchronization, Transfer Rate, and Latency 118
6.3 Polled Waiting Loops 119

vii

viil

Chapter 7

Chapter 8

Contents

6.4

6.5

6.6

Interrupt-Driven /O 121

6.4.1 The Hardware Response 121

6.4.2 The Interrupt Service Routine 124

6.4.3 Programmable Interrupt Controllers 125
6.4.4 Buffers and Queues 126

6.4.5 Writing Interrupt Service Routines in Assembly 128
6.4.6 Writing Interrupt Service Routinesin C 129
6.4.7 Nonmaskable Interrupts 130

6.4.8 Software Interrupts 130

6.4.9 Exceptions 132

Direct Memory Access 132

6.5.1 Double Buffering 133

Comparison of Methods 134

Problems 135

Concurrent Software 138

7.1

72

73

Foreground/Background Systems 138

7.1.1 Thread State and Serialization 139

7.1.2 Managing Latency 139

7.1.3 Preventing Interrupt Overrun 143

7.1.4 Moving Work into the Background 144
Multithreaded Programming 145

7.2.1 Concurrent Execution of Independent Threads 145
7.2.2 Context Switching 146

7.2.3 Nonpreemptive (Cooperative) Multitasking 147
7.2.4 Preemptive Multitasking 147

Shared Resources and Critical Sections 148

7.3.1 Disabling Interrupts 150

7.3.2 Disabling Task Switching 150

7.3.3 Spin Locks 151

7.3.4 Mutex Objects 152

7.3.5 Semaphores 152

Problems 153

Scheduling 155

8.1
8.2
83
84

Thread States 155

Pending Threads 156

Context Switching 157
Round-Robin Scheduling 158

Chapter 9

Chapter 10

Contents

8.5 Priority-Based Scheduling 159
8.5.1 Priority Inversion 159
8.5.2 The Priority Inheritance Protocol 160
8.5.3 The Priority Ceiling Protocol 161

8.6 Assigning Priorities 161
8.6.1 Deadline-Driven Scheduling 161
8.6.2 Rate-Monotonic Scheduling 162

8.7 Deadlock 163

8.8 Watchdog Timers 164

Problems 166

Memory Management 168
9.1 ObjectsinC 168
9.2 Scope 169
9.2.1 Refining Local Scope 169
9.2.2 Refining Global Scope 170
9.3 Lifetime 171
9.4 Automatic Allocation 172
9.4.1 Storage Class “Register” 173
9.5 Static Allocation 174
9.6 Three Programs to Distinguish Static from Automatic 174
9.6.1 Object Creation 175
9.6.2 Object Initialization 175
9.6.3 Object Destruction 176
9.7 Dynamic Allocation 177
9.7.1 Fragmentation 178
9.7.2 Memory Allocation Pools 179
9.8 Automatic Allocation with Variable Size (alloca) 179
9.8.1 Variable-Size Arrays 180
9.9 Recursive Functions and Memory Allocation 181
Problems 182

Shared Memory 189

10.1 Recognizing Shared Objects 189
10.1.1 Shared Global Data 190
10.1.2 Shared Private Data 190
10.1.3 Shared Functions 190

10.2 Reentrant Functions 190

x Contents

10.3 Read-Only Data 191
10.3.1 Type Qualifier “const” 191
10.4 Coding Practices to Avoid 192
10.4.1 Functions That Keep Internal State in Local Static Objects 192
10.4.2 Functions That Return the Address of a Local Static Object 194
10.5 Accessing Shared Memory 195
10.5.1 The Effect of Processor Word Size 196
10.5.2 Read-Only and Write-Only Access 197
10.5.3 Type Qualifier “volatile” 198
Problems 200

Chapter 11 System Initialization 203
11.1 Memory Layout 203
11.2 The CPU 204
11.2.1 Setting Up a Flat Memory Model 204
11.2.2 Switching into Protected Mode 207
11.3 C Run-Timeé Environment 207
11.3.1 Copying from ROM to RAM 208
11.3.2 Zeroing Uninitialized Statics 208
11.3.3 Setting Up a Heap 209
11.4 System Timer 211
11.4.1 Timer O: Timer Tick 211
11.42 Timer 1: Memory Refresh 212
11.4.3 Timer 2: Speaker Frequency 212
11.5 Interrupt System 213
11.5.1 Initializing the IDT 213
11.5.2 Initializing the 8259 PICs 215
11.5.3 Installing a New Interrupt Service Routine 216

Appendix A : Contents of the CD-Rom 219

Appendix B : The DJGPP C/C++ Compiler 220
Installation 220
Compilation 221
On-Line Documentation (Info) 222

Appendix C : The NASM Assembler 223
Installation 223
Running NASM 223

Contents

Appendix D : Programming Projects 225

Files Required from the CD-ROM for All Applications 225
Files Required for Nonpreemptive Multithreaded Applications 225
Files Required for Preemptive Multithreaded Applications 226
Compiling and Assembling Your Embedded Application 226
Linking Your Embedded Application 226
Preparing the Boot Diskette 227
Running Your Embedded Application 227
Program 1: Getting Started with the DJGPP Compiler Tools 228
Program 2: Using Fixed-Point Real Numbers 230
Program 3: Using Macros and Packed Operands 231
Program 4: Using “Makefiles” 232
Program 5: Coding Extended Precision Multiplication in Assembly 235
Program 6: Coding Extended Precision Division in Assembly 237
Program 7: Polled Waiting Loop and Interrupt-Driven I/O 238
Program 8: A Simple Nonpreemptive Multithreaded Application 240
Program 9: Preemptive Kernels and Shared Resources 242
Program 10; Avoiding Unbounded Priority Inversion 245
Program 11: Avoiding Deadlock 246

Appendix E : The libepc Library 247

Memory Layout and Initialization 247

Display Functions (display.c) 248

Window Functions (window.c) 250

Keyboard Functions (keyboard.c) 251

Speaker Functions (speaker.c) 252

Timer Functions (timer.c, cycles.asm) 252
Interrupt Vector Access Functions (init-idt.c) 253
Dyamic Memory Allocation Functions (heap.c) 254
Fixed Point (fixedpt.asm) 254

Interfunction Jumps (setjmp.asm) 255
Miscellaneous Functions (init-crt.c) 256

Appendix F : The Boot Loader 257

Index 258

xi

CHAPTER 1

Introduction

1.1 WHAT IS AN EMBEDDED SYSTEM?

Embedded systems are electronic devices that incorporate microprocessors within their
implementations. The main purposes of the microprocessor are to simplify system design
and provide flexibility. Having a microprocessor in the device means that removing
bugs, making modifications, or adding new features are only matters of rewriting the
software that controls the device. Unlike PCs, however, embedded systems may not
have a disk drive and so the software is often stored in a read-only memory (ROM) chip;
this means that modifying the software requires either replacing or “reprogramming”
the ROM. =~

AsTable 1-1 indicates, embedded systems are found in a wide range of application
areas. Originally they were used only for expensive industrial-control applications, but
as technology brought down the cost of dedicated processors, they began to appear in
moderately expensive applications such as automobiles, communications and office
equipment, and televisions. Today’s embedded systems are so inexpensive that they are
used in almost every electronic product in our life.

In many cases we’re not even aware that a computer is present and so don’t real-
ize just how pervasive they have become. For example, although the typical family may
own only one or two personal computers, the number of embedded computers found
within their home and cars and among their personal belongings is much greater.

What is often surprising is that embedded processors account for virtually 100%
of worldwide microprocessor production! For every microprocessor produced for use

FIGURE 1-1 NASA’s Mars
Sojourner Rover used an Intel
80C85 8-bit microprocessor.
Courtesy of NASA/JPL.

