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Preface

How many computers are in your home? Most people might answer two or three. How
many microprocessors are in your home? Think carefully before you answer. (Hint: It’s
a lot more than two or three! In fact, it’s actually even a lot more than 10 or 20!) Today,
microprocessors are embedded in almost every electronic appliance you can think of and
many that you probably wouldn’t. They have become pervasive—not only in our home,
but in our workplace, our automobiles, airplanes, stoplights, supermarkets, cell phones—
in short, in almost every aspect of our lives.

Embedded systems offer students an exciting opportunity to express their
creativity. What student hasn’t dreamed of designing the next new gadget that would
capture the imagination of the public? Our challenge as educators is to capitalize on
that excitement and channel the energy of those young minds to motivate mastery of a
subject matter!

Objectives

The ultimate goal of this text is to lay a foundation that supports the multithreaded style
of programming and high-reliability requirements of embedded software. Within this
context, the following objectives were established:

L. To understand how data is represented at the machine level and to appreciate
the consequences and limitations of those representations.

2. To master those language-specific features that are used most frequently in
embedded systems, such as bit manipulation and variant access.

3. To obtain a programmer’s view of processor architecture and how programming
at the level of assembly is sometimes necessary or appropriate.

4. To learn about the various styles of I/O programming and, ultimately, how an
event-driven approach allows one to separate data processing into a number of
independent threads of computation.

5. To learn about nonpreemptive and preemptive multithreaded programming,
shared resources and critical sections, and how scheduling can be used to
manage system response time.

*6. To reinforce basic programming skills by revisiting such topics as scope,
parameter passing, recursion, and memory allocation.

7. To learn about the problems associated with shared memory objects, how shared
memory is affected by memory allocation, and what programming practices can
be used to minimize the occurrence of shared memory.

xiii
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Intended Audience

This text is intended to serve as the basis for a sophomore-level course in a computer
science, computer engineering, or electrical engineering curriculum. Such a course is
envisioned as a replacement for the traditional course on computer organization and
assembly language programming.

The text presents assembly the way it is most commonly used in practice—to
implement small, fast, or special-purpose routines called from a main program written
in a high-level language such as C. It thus covers processor organization and assembly
language only from a “need-to-know” point of view, rather than as a primary objective.
This approach affords time within both the text and the course to cover assembly in
the context of embedded software. As a result, students not only learn that assembly
still has an important role to play, but their discovery of multithreaded programming,
preemptive and nonpreemptive systems, shared resources, and scheduling helps sustain
their interest, feeds their curiosity, and strengthens their preparation for subsequent
courses on operatin’g systems, real-time systems, networking, and microprocessor-
based design.

At most institutions, the introductory programming sequence (CS1, CS2) is no
longer taught in a procedural programming language such as C or Pascal; rather, the
popular approach is to now use an object-oriented programming language such as C++
or Java. Despite the change, it is not uncommon to find one or more upper division
courses still using a procedural language, nor is it uncommon to find such languages still
in use in industry. At the author’s institution, we solved this paradox by redesigning our
traditional assembly-language course around the material in this book; it not only created
room in an already packed curriculum to cover the procedural approach and to introduce
the popular topic of embedded systems, but it has also offered an opportunity to
strengthen student comprehension of parameter passing, scope, and memory allocation
schemes that they were first introduced to in CS1 and CS2.

The text assumes that students already know how to program in C, C++, or Java,
and that the similarity among the low-level syntax of those languages makes it relatively
easy to move to C from either C++ or Java. Rather than covering C in excruciating
detail, the text emphasizes those features of C that are employed more frequently in
embedded applications, and introduces the procedural style through examples and
programming assignments that include large amounts of prewritten source code. In
principle, the only absolute prerequisite is thus a CS1 course that uses C,C++, or Java.
However, additional programming maturity such as acquired from a CS2 course on data
structures is strongly recommended.

Programming Assignments and the CD-Rom

The text is complemented by a collection of programming assignments described in
Appendix D. Given that the text is aimed at sophomores, the assignments are intended
primarily to illustrate a topic from the text, rather than as extended programming
projects. As such, most of the source code for each assignment is provided on the
CD-Rom and students are asked to focus only on those parts that relate directly to
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the topic. For example, the last three assignments provide complete source code to
graphically demonstrate problems associated with shared resources, priority inversion,
and deadlock, and require the student to correct these problems by modifying specific
parts of the code by using strategies presented in the text.

The programming assignments and when they should be scheduled relative to
material in the text is summarized as follows:

Programming | Relevant
Assignment Chapter Comment

1 n/a Introduction to C and the DIGPP compiler; requires no
knowledge of material in the text, and may be scheduled during
the first week of the course.

2 2 Fixed-precision real numbers in C.
3 3 Macros and packed operands in C.
4 n/a makefiles: Typically assigned while studying Chapter 4, but has no
direct relationship to that material.
S5and 6 5 Assembly-language programming.
7 6 Interrupt-driven I/O in assembly.
8 7 Multi-threaded programming with a nonpreemptive kernel.
9 7 Preemptive kernels, shared resources, and semaphores.
10and 11 8 Scheduling problems (priority inversion and deadlock).

On the CD-Rom you’ll also find all the software tools needed to develop
embedded applications under Microsoft Windows 9X, 2000 and NT: the DIGPP port of
the gnu C compiler and linker, a compatible assembler and run-time libraries. A boot
loader is provided to load (and execute) the embedded application into memory from
diskette. Where possible, source code for each of these tools has also been included.
Directions for using each of these tools are found at the beginning of Appendix D.

Choice of Platform

The text uses the ubiquitous PC as a platform for learning about processor architecture,
assembly language, and embedded software. Two primary factors motivated this choice:
(1) Students will ultimately encounter the Intel architecture due to its dominance within
the PC market, and (2) choosing to build embedded applications on the PC has the
added benefit of allowing instructors to offer an associated laboratory component
without investing in specialized single board computers.

Most assembly-language programming textbooks for the Intel processor cover the
original “real” mode of the 8088. However, the protected mode of the 386 and later Intel
processors is much more representative of modern architecture and is actually much
easier to program when configured to use a “flat” memory model. Although real mode
is covered briefly in the text, the emphasis is on protected mode and is used in all the of
assembly-language examples.
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One should not construe that a PCis the best (or even an appropriate) platform for
building actual embedded systems. Most embedded applications have no need for many
of the PC’s standard peripherals (e.g., display, keyboard, disk), and the power-on boot
procedure in the ROM BIOS doesn’t even support diskless applications. Trying to write
initialization code to replace the BIOS is difficult at best, because it requires knowledge
of chipset-dependent features that vary from PC to PC and which are often proprietary.
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CHAPTER 1

Introduction

1.1 WHAT IS AN EMBEDDED SYSTEM?

Embedded systems are electronic devices that incorporate microprocessors within their
implementations. The main purposes of the microprocessor are to simplify system design
and provide flexibility. Having a microprocessor in the device means that removing
bugs, making modifications, or adding new features are only matters of rewriting the
software that controls the device. Unlike PCs, however, embedded systems may not
have a disk drive and so the software is often stored in a read-only memory (ROM) chip;
this means that modifying the software requires either replacing or “reprogramming”
the ROM. =~

AsTable 1-1 indicates, embedded systems are found in a wide range of application
areas. Originally they were used only for expensive industrial-control applications, but
as technology brought down the cost of dedicated processors, they began to appear in
moderately expensive applications such as automobiles, communications and office
equipment, and televisions. Today’s embedded systems are so inexpensive that they are
used in almost every electronic product in our life.

In many cases we’re not even aware that a computer is present and so don’t real-
ize just how pervasive they have become. For example, although the typical family may
own only one or two personal computers, the number of embedded computers found
within their home and cars and among their personal belongings is much greater.

What is often surprising is that embedded processors account for virtually 100%
of worldwide microprocessor production! For every microprocessor produced for use

FIGURE 1-1 NASA’s Mars
Sojourner Rover used an Intel
80C85 8-bit microprocessor.
Courtesy of NASA/JPL.




