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Preface

. This little book has evolved from my experience in teaching convex analysis

at the University of Utrecht, Holland. In theory and applications, convex
analysis is of increasing interest at the present time. This book is primarily
an introductory text; therefore I have tried to emphasize the basic concepts
and the characteristic methods of this part of mathematics (such as separa-
tion, subgradient, conjugate function, convex optimization). A large number
of elementary exercises at the ends of the various chapters (with answers

- and hints at the end of the book) are intended to aid in understanding the

concepts employed.

The book is intended for the young student who is interested in convexity
and whose mathematical background includes the basic facts of calculus,
linear algebra, and general topology; it is also supposed that he is ac-
quainted with the basic concepts of functional analysis (such as normed
linear space, Hilbert space, dual).

In order to convey the flavour of the subject and to arouse the student’s
interest, I have not restricted myself to the finite-dimensional case one
usually deals with in practice. But to keep things as simple as possible, of the
class of locally convex spaces, the ‘natural’ domain of convex analysis, only
normed spaces appear in this book.

Some historical remarks and additional material are collected in biblio-
graphical notes; of course these are by no means exhaustive.

Chapter 1 summarizes the essentials of the theory of real convex functions
on the real line. We also consider some generalizations to functions which

can have infinite values.

Chapter 2 studies algebraic properties of convex sets in a linear space. In
the case of a linear topological space, we find some topological properties of

convex sets. ¥

Chapter 3 develops the theory of separation in a linear space. Applying
this theory in the case of a linear topological space yields the Hahn-Banach
theorem.




~ Chapter 4 considers some classical theorems concerning convex su
R" and some applications to polyhedral cones. Using the notion of re:
interior, we study separation in R". i .

~ Chapter 5 studies convex functions on a linear space which can have
infinite values. In a certain sense, locally boundedness turns out to

~ equivalent to continuity. We study the important concepts of lower s

continuity and subdifferentiability.

Chapter 6 develops the theory of duality. We find characterizations o
bipolar function and of support functions.

Chapter 7 gives an impression of the meaning of convexity in opt -
tion. It deals mainly with convex programming (Kuhn-Tucker conditions,
saddle points and Fenchel’s duality theorem).

I am indebted to Professor John Horvath who suggested the writing of
English version of my lecture notes. I wish to thank my colleagues Tineke de
Bunje and Leen Roozemond who have read all or part of the manuscr
and made many improvements. Finally, my thanks go to Mrs. M. M. Mefi’
~ who spent many hours typing the manuscript. : o 5

&




Chapter 1 Convex Functions on R

~ Real convex functions . . .

- Midpoint convexity . . . . . .
Differentiable convex functlons '
Theorems concerning integrals .
The conjugate function . . . .
Convex functions with values in R

- Generalizations . .
- Exercises
tNotes . : .

-Convex hull and affine hull .

vex polytopes . . . . . .
Algebraic interior and algebraic closure
Convex algebraic bodies . . .
Convex subseéts of a linear topologlcal space
Exercises .

Sepamuon in a linear space . . .
‘Separation in a linear topological space
The Hahn-Banach theorem . . .
Theorems in a normed linear space
L R N R N




i

Chapter 4 Convex Subsets of R"
Some classicaltheorems . . . . . . . . . ¢ . . 40 4. e .
Therelative interior . . . . « « v v & v w v o b v e o PR
Separation iInR™ . . .. . . . e e e o e e e sl
Polyhedral CONES. v s« v v 5 & s vis i a w ohe Wl ST RT0
BIXEICISES & v 2 o o s o o o m e wow wee e e e e
NOES 0 vv s ws 6 o s 58 5 o w. s ' s w o s wia e e o bt U

Chapter 5 Convex Functions on a Linear Space . . . .
Theepigraph . . . . . . . . . . . v oo o
Lower semi-continuity . . . . . . . . . . . . . ..
EGNVEXILY " o Sl wwom o e ee s w o e e s
Contlnulty...................
Continuity and lower semi-continuity inR" . . . . . .
Differentiable convex functions . . . . . . . . . . .
Subdifferentiability . . . . . . . . . .00 L
EXEICISES vn & v 5 & & 5 & 8 8 @ 5 woow wje e el
MOLES > . W o s am s B oE ow B s e sl owa

Chapter 6 Duwality . . . . . . . . . . . . .. ...
The conjugate function . . . . . . . . . . . . . .
The bipolar function . . . . . . . . . . . .. . ..
THE SEtT(E) r ¢ v s w i e o = w e +0 o % s 's & 4 8
Support functions . . . . . . . . ... ... ..
BXEICISES . " is ui w o n o w m om e 4w e el e e @ wind
NOLES. "L o ol s w w s e e s m o e 8 e e S L el

Chapter 7 Optimization . . . . . . . . . . . . . ..
OonvexprogramminginR"
Saddlepoints . . . . . . . . .. . ..o oo e e
Fenchel’s duality theorem . . . . . . . . . . . . .
Proximity mappings . . . . . . . . . . o ... ..
Monotone Operators . . . . . . . . o4 . . e e e s s
INOteS - & wihiy s vd & W @ & e mte ot e R e e

Answersand Hints . . . . . . . . . . .« o o o .

SubjectIndex . . . . . . . . . .0 .00 e ..




CHAPTER 1

Convex Functions on R

In this chapter we shall designate by I a (closed, open or half-open, finite or
infinite) interval in R.

REAL CONVEX FUNCTIONS

1.1 Definitions

Let f be a function I —R.
’(a) f is said to be convex if
fa+(1—-2A)b)<Af(a)+(1—-A)f(b) (1)

for all a, bel and all A eR with 0<A<1. Figure 1 shows the geo-
metrical meaning of convexity: the chord with endpoints (a, f(a)) and
(b, f(b)) lies nowhere underneath the graph of f. ,

(b) f is said to be strictly convex if it is convex and the strict inequality
holds in (1) whenever a# b.

1.2

_ We give some other, equivalent, formulations of the convexity of f: I -»R:

s ina) 2
‘ 1% —X xXxX—a
':7' ﬂﬂ\b_aﬂ®+b_aﬂw

‘for all a, b, xeI with a <x <b. Note that the right-hand side of this
inequality can be written as

f(b) f(a)

fla)+————(x—a).




f(xa+ ub) <Af(a)+ uf(b)
for all a, beI and all A, n €R such that A>0, u>0, A+p=1.

The proof of the following simple propertles is left to the reader.

‘(@) If f and g are convex functions and a=0, =0, then af+ Bg is
convex.

(b) ‘The sum of ﬁmtely many convex functions is convex.

convex.
(d) Let f: I—->R be convex. Then

$amer ana (3 rx)<% u(aq)

; whenever xel, ,=0 (1<sisn), Y1 Nh=1
(e) Let f be the pointwise supremum of an arbltrary collection of conv
functions I —R. If f is finite everywhere on I, then f is convex. Does a
analogous proposition hold for the infimum?

1.4 Theorem
Let f: I >R be convex. Then

£~ fla) _f(b)~f(a) _fB)—f(x)

x—a b—a b~+x
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Figure 2

a<x<b. If f is strictly convex, then the strict i

"slope(AC) < slope(BC)

mt. Since f is convex, we have

Fx) <2 f(a) +5— f(b).

‘From this inequality we can derive:

ﬂn—ﬂmsa‘xﬂm+x"“ﬂm=x‘“Uw%fmn’

‘which proves the first inequality in (2); the second mequahty can be proved
a'similar way. If f is strictly convex, then the strict inequality holds in (3)
-and thus also in (2).

We denote the interior of I by int(I). Let f: I—R be convex, and let
ceint(I). Let [a, b]< I such that a <c<b. By Theorem 1.4, we have
f(C)"f(a)<f(x)—f(C)
c—a = x—c
enever x €{c, b]. It also follows from Theorem 1.4 that the function
f6)—f()

X—C




4 ,
is non-decreasing on {c, b]. Hence the right derivative

f(x)—f(c)
X—C

filc):= liin
exists. In a similar way it can be proved that the left defivative fL(c) exists.
If a<c<d<b, then for sufficiently small positive h we have el

fle)—flc—h) _flc+h)—f(c) _f(d)—f(d—h)
h i i = h g

Passing to the limit as h 0, we obtain
' fLe)=file)=fu(d).

We have thus proved the following theorem.

1.6 Theorem

~ Let f: I —>R be convex. Then f has a right derivative and a left derivative at b
every point of int(I), and f’ and f are non-decreasing on int(I). If ¢ € int(I),
we have

fL(e)=<fi(c)

. and
f@)=fle)+fLc)x—c), flx)=flc)+filc)x—c)
for all x eI (cf. Figure 3).

Remark. Let f:[a, b]—>R be convex. The above proof shows that in this
case f.(a) and f’(b) exist if +o and —x are allowed as limits. i

7 =rfle)+ £ile)x-c)




1.7

f: I—R is called Lipschitzian relative to I,<I if there exists K>0 such
that |f(x)— f(y)|<K|x—y| for all x, yeI,. This condition implies that f is
continuous and even uniformly continuous relative to I, and of bounded
variation on every closed bounded sub-interval of I,.

Theorem. Let f: I - R be convex and [a, b] < int(I). Then
(a) f is Lipschitzian relative to [a, b].
(b) f is continuous on int(I).

Proof. There exist ¢, d € I such that ¢ <a <b <d. By Theorem 1.6, we have

fila) <fi(n<"EL) (”<f V) =<F.(b)

whenever a<x<y<b. It follows that [f(x)—f(y)|<K|x—y| where
K :=max(|f/(a)|, |f_(b)|). This proves (a); (b) is an immediate consequence
. of (a).

Remark. Note that f is not necessarily Lipschitzian relative to I, even if f is
bounded, and that f is not necessarily continuous on I, even if I is closed
and finite.

1.8

A function which is Lipschitzian relative to an interval [a, b] is absolutely -
continuous on [a, b]; it is a well-known fact that such a function is differenti-
able almost everywhere. It thus follows from § 1.7 that a convex function is
differentiable almost everywhere.

In the sequel we shall prove a still stronger differentiability property of
convex functions, without making use of the concept of absolute con-
tinuity.

Theorem. Let f: I - R be convex. Then
(a) On int(I), f. is left-continuous and f} is right-continuous.
(b) There are only countably many points where f is not differentiable.

Proof. (a) In virtue of the continuity of f on int(I) (§ 1.7) we have, for all x,
y, z €int(l)

f(y)—f(x) 1lim f(y) f()

Yy =% zJx

im f1(2)
whenever x <z <y. Passing to the limit as y|x, we obtain

filx) =lim fi(2).




~ Since fi is non-decreasing (Theorem 1.6) we have

fr(x)<lim fi(2).

We conclude that f{(x)=1im, , f1(z), which proves the nght-contmulty Qf
fi. The left-continuity of f_ can be proved in a similar way.
(b) By Theorem 1.6, we have

fix)=<fy)=fi(z) i
for all x, y, zeint(I) with x<y<z. If f is continuous at y, we have .

Fily) =lim £1(x) =lim 1(2) = f(y)

which means that f is differentiable at y. It follows that the points of int(I) -
where f is not differentiable are those where the non-decreasing function fi
has a jump. This proves (b), since there are only countably many such
jumps. : %

MIDPOINT CONVEXITY

i

1.9
Closely related to convexity is the following 'concept.
Definition. A function f: I >R is  said to be midpoint convex if for all a,
bel e
a <o
(%0 <t + o @
* Figure 4 shows the geometrical meaning of midpoint convexity: the mid-

point of the chord connecting two points on the graph of f does not he
underneath the corresponding point on the graph '




1.10 _ Theorem

- Let f: I—R be midpoint convex and continuous. Then f is convex.

 Proof. Let (a,) be a sequence in I. From (4) it follows that

| | f<a1+a2:a3+a4)s%f(a1;-a2)+%t(a3;—a4)
Eh ' <3{f(ay) + f(a) + f(as) + f(as)]

~ and by induction, one can prove that

.f(a1+a2+. ) .+an)s_'1;i§1f(ai)

n

for all n of the form 2*. ‘
Assume now that (5) holds when n = N. Setting

ay=——(a,t+a+...+an-1),
. N N—l( 17Ty N-1)
we have

aN=%(a1+‘. ..+ay)
arndv hence
flan) = (219 < LS ) 4 faw.

| It follows tﬁat

flan) < Z f(a)

neN.
Let a, beI and k, neN such that k <n. From (5) it follows that

(£ a+ "5 b) < [kf(@)+ (n—f®)]
n n n

- and hence

o , C fa+(1-M)b)=Af(a)+(1—N)f(b)

)

so that (5) holds also when n=N—1. We conclude that (5) holds for all

(6)

whenever A €eQ, 0< A <1. In virtue of the continuity of f we conclude that

(6) also holds whenever A R, 0<A <1.




DIFFERENTIABLE CONVEX FUNCTIONS

1.11 Theorem

Let I be open, and let f: I >R be twice differentiable. Then f is convex if
and only if f"(x)=0 for all xeL

Proof. ‘Only if’: by Theorem 1.6, f’ is non-decreasing on I. Hence f"(x)=0
for all xe L

- ‘If: let x, yel, x<y and 0<A<1. By the mean value theorem of
calculus, there exist &, &, x<&<Ax+(1—-AN)y<é& <y and &, €,<&E<é,
such that ‘

fx+(1=A)y)=Af(x) - (1= A)f(y)
= Af(Ax+(1=A)y) = fG)]+ A= D[F(Ax + (1 —-A)y) - f(y)]
=A1-M)(y —x)f (€D + (A=A (x—y)f' (&)
‘ =AA—=A)(y —x)(& — &)f"(€3)=<0.
It follows that f is convex.
Remark. From the above proof we can conclude that f is strictly convex if

f"(x)>0 for all xeI The converse is not true: the function f: x> x* is
strictly convex on R, but we have f"(0)=0.

1.12 Inequalities

Many simple examples of convex functions can be obtained from Theorem
1.11, and by means of these functions one can derive inequalities which
often are not so simple at first sight. We give an example:

x*yE < Ax+py 4

whenever x>0, y>0, A>0, >0 and A+p =1. This inequality can be
derived by using the (strict) convexity of the function x — €* in the following
form: ;

exp(A log x + u log y) < A exp(log x)+ u exp(log y).

Other well-known ways of presenting (7) are

x/pyl/a S—1-x+-1-y (8
P q :
and
(R :
Xy <—xP+-—y* ©
P q

where x>0, y>0, p>1, q>1 and 1/p+1/q=1. For p=q=2, (8) is the
well-known inequality /(xy)<3(x+y).




THEOREMS CONCERNING INTEGRALS

1.13 Theorem

Let f be a function (a, b)—R. Then f is convex if and only if f can be
represented in the form

Fo)=fe)+ [ g0t (e xeta,by 10)

where g.is a non-decreasing right-continuous function {a, b) — R.

Proof. ‘Only if’: let f be convex and c, x €{a, b). By Theorem 1.6 and § 1.8,
fi exists and is non-decreasing and right-continuous. Set

h(e):= rwdn

c

We have

liml [ft+e)—f®)]=fi(®) (a<t<b).
el0 g

By § 1.7, there exists K >0 such that

Lise+er- 0| <x

for all t between ¢ and x and all sufficiently small & >0. Applying Lebes-
gue’s dominated convergence theorem yields

tim h(e) = [ 710
(note that the last integral is a Riemann integral, in virtue of the monotonic-
ity of the integrand). We also have
1 x 1 x+e x
[ rerer-roa=1{[ o a- [ o a]

3 +e
1 x+e 1 c+e
[T a-2 [T f-fe) aselo
€ J, € J.
(in view of the continuity of f). Hence

Pt o) j o (11)

(o

‘If’: suppose that (10) holds, where g is non-decreasing. Let x, y €{a, b), :




