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Foreword

By its nature, automatic program analysis is the art of finding adequate com-
promises. Originally, in the 1970s, program analysis aimed at deriving precon-
ditions for typically obviously correct optimizing program transformations.
Heuristics for loop optimizations were popular, which in particular concerned
the treatment of multi-dimensional arrays. The limits of these heuristics-
based approaches became apparent when looking at the combined effects of
optimizations — in particular in the context of concurrency. Since then, the
loss of confidence in optimizing compilers has been fought by semantics-based
methods that come with explicitly stated power and limitations.

A particularly natural and illustrative class of program analyses aims at
detecting program constants, i.e. occurrences of program expressions which
are guaranteed to evaluate to the same value in every run. This problem is
essentially as hard as program verification in its full generality, though there
are interesting subclasses which can be solved effectively or even efficiently.

Markus Miiller-Olm investigates particularly interesting variations of such
classes which are characterized by varying strengths of interpretation and by
increasingly complex data and control structures. In particular, he considers
in detail three main classes of problems:

— The purely sequential situation, where his ideal theoretic treatment of poly-
nomial constants is really outstanding. It is a delight to follow the elegant
algebraic development!

— The treatment of copy constants for fork-join parallel programs. This turns
out to be very hard already in restricted settings like acyclic programs, and
becomes undecidable in the context of procedures.

— A variation of the second class, where he waives the usual atomicity prop-
erties during execution. At first sight it is really surprising that this dras-
tically simplifies the analysis problem. However, a closer look reveals that
the decrease in algorithmic complexity goes hand in hand with a decrease
in quality — as the waived atomicity is vital for a decent control of parallel
computation.

Markus Miiller-Olm succeeds in significantly improving the known results
for the scenarios considered. However, what makes the book very special
is the impressive firework of elaborate methods and powerful techniques.



VI Foreword

Everybody working in the field will profit from passing from scenario to
scenario and experiencing Markus Miiller-Olm’s mastership of choosing the
adequate means for each of the considered analysis problems: one leaves with
a deep understanding of the inherent underlying differences and in particular
of the complexity of modern programming concepts in terms of the hardness
of the implied analysis problem.

July 2006 Bernhard Steffen



Preface

Computer science is concerned with design of programs for a wide range of
purposes. We are, however, not done once a program is constructed. For vari-
ous reasons, programs need to be analyzed and processed after their construc-
tion. First of all, we usually write programs in high-level languages and before
we can execute them on a computer they must be translated into machine
code. In order to speed up computation or save memory, optimizing compilers
perform program transformations relying heavily on the results of program
analysis routines. Secondly, due to their ever-increasing complexity, programs
must be validated or verified in order to ensure that they serve their intended
purpose. Program analysis (in a broad sense) is concerned with techniques
that automatically determine run-time properties of given programs prior to
run-time. This includes flow analysis, type checking, abstract interpretation,
model checking, and similar areas.

By Rice’s theorem [79, 31], every non-trivial semantic question about pro-
grams in a universal programming language is undecidable. At first glance,
this seems to imply that automatic analysis of programs is impossible. How-
ever, computer scientists have found at least two ways out of this problem.
Firstly, we can use weaker formalisms than universal programming languages
for modeling systems such that interesting questions become decidable. Im-
portant examples are the many types of automata studied in automata the-
ory and Kripke structures (or labeled transition systems) considered in model
checking. Secondly, we can work with approrimate analyses that do not al-
ways give a definite answer but may have weaker (but sound) outcomes.
Approximate analyses are widely used in optimizing compilers.

An interesting problem is to assess the precision of an approximate anal-
ysis. One approach is to consider an abstraction of programs or program
behavior that gives rise to weaker but sound information and to prove that
the analysis yields exact results with respect to this abstraction (cf. Fig. 0.1).
The loss of precision can then be attributed to and measured by the em-
ployed abstraction. This scheme has been used in the literature in a number
of scenarios [40, 86, 43, 87, 88, 24].

The scheme of Fig. 0.1 allows us to make meaningful statements on ap-
proximate analysis problems independently of specific algorithms: by devising
abstractions of programs, we obtain well-defined weakened analysis problems



VIII  Preface

Original Abstraction | Weakened
problem problem

Approximate results Exact results

Analysis

Fig. 0.1. Using an abstraction to assess the precision of an approximate analysis.

and we can classify these problems with the techniques of complexity and
recursion theory. The purpose of such research is twofold: on the theoretical
side, we gain insights on the trade-off between efficiency and precision in the
design of approximate analyses; on the practical side, we hope to uncover
potential for the construction of more precise (efficient) analysis algorithms.

In this monograph we study weakened versions of constant propagation.
The motivation for this choice is threefold. Firstly, the constant-propagation
problem is easy to understand and of obvious practical relevance. Hence,
uncovering potential for more precise constant-propagation routines is of
intrinsic interest. Secondly, there is a rich spectrum of natural weakened
constant-propagation problems. On the one hand, we can vary the set of al-
gebraic operators that are to be interpreted by the analysis. On the other
hand, we can study the resulting problems in different classes of programs
(sequential or parallel programs, with or without procedures, with or without
loops etc.). Finally, results for the constant-propagation problem can often
be generalized to other analysis questions. For instance, if as part of the ab-
straction we decide not to interpret algebraic operators at all, which leads to
a problem known as copy-constant detection, we are essentially faced with an-
alyzing transitive dependences in programs. Hence, results for copy-constant
detection can straightforwardly be adapted to other problems concerned with
transitive dependences, like faint-code elimination and program slicing.

In this monograph we combine techniques from different areas such as
linear algebra, computable ring theory, abstract interpretation, program ver-
ification, complexity theory, etc. in order to come to grips with the considered
variants of the constant-propagation problem. More generally, we believe that
combination of techniques is the key to further progress in automatic analy-
sis, and constant-propagation allows us to illustrate this point in a theoretical
study.

Let us briefly outline the main contributions of this monograph:

A hierarchy of constants in sequential programs. We explore the complex-
ity of constant-propagation for a three-dimensional taxonomy of constants
in sequential imperative programs that work on integer variables. The first
dimension restricts the set of interpreted integer expressions. The second di-
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mension distinguishes between must- and may-constants. May-constants ap-
pear in two variations: single- and multiple-valued. May-constants are closely
related to reachability. In the third dimension we distinguish between pro-
grams with and without loops. We succeed in classifying the complexity of the
problems almost completely (Chapter 2). Moreover, we develop (must-)con-
stant-propagation algorithms that interpret completely all integer operators
except for the division operators by using results from linear algebra and
computational ring theory (Chapter 3).

Limits for the analysis of parallel programs. We study propagation of copy
constants in parallel programs. Assuming that base statements execute atom-
ically, a standard assumption in the program verification and analysis lit-
erature, we show that copy-constant propagation is undecidable, PSPACE-
complete, and NP-complete if we consider programs with procedures, without
procedures, and without loops, respectively (Chapter 4). These results indi-
cate that it is very unlikely that recent results on efficient exact analysis of
parallel programs can be generalized to richer classes of dataflow problems.

Abandoning the atomic execution assumption. We then explore the conse-
quences of abandoning the atomic execution assumption for base statements
in parallel programs, which is the more realistic setup in practice (Chap-
ters 5 to 9). Surprisingly, it turns out that this makes copy-constant detection,
faint-code elimination and, more generally, analysis of transitive dependences
decidable for programs with procedures (Chapter 8) although it remains in-
tractable (NP-hard) (Chapter 9). In order to show decidability we develop a
precise abstract interpretation of sets of runs (program executions) (Chap-
ter 7). While the worst-case running time of the developed algorithms is
exponential in the number of global variables, it is polynomial in the other
parameters describing the program size. As well-designed parallel programs
communicate on a small number of global variables only, there is thus the
prospect of developing practically relevant algorithms by refining our tech-
niques.

These three contributions constitute essentially self-contained parts that
can be read independently of each other. Figure 0.2 shows the assignment of
the chapters to these parts and indicates dependences between the chapters.
For clarity, transitive relationships are omitted.

Throughout this monograph we assume that the reader is familiar with
the basic techniques and results from the theory of computational complexity
[72, 36], program analysis [70, 2, 30, 56], and abstract interpretation [14,
15]. A brief introduction to constraint-based program analysis is provided in
Appendix A.

Acknowledgments
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1. Introduction

Constant propagation is one of the most widely used optimizations in practice
(cf. [2, 30, 56]). Its goal is to replace expressions that always yield a unique
constant value at run-time by this value. This transformation can both speed
up execution and reduce code size by replacing a computation or memory
access by a load-constant instruction. Often constant propagation enables
powerful further program transformations. An example is branch elimination:
if the condition guarding a branch of a conditional can be identified as being
constantly false, the whole code in this branch is dynamically unreachable
and can be removed.

The term constant propagation is somewhat reminiscent of the technique
used in early compilers: copying the value of constants in programs (like in
x := 42) to the places where they are used. The associated analysis problem,
to identify expressions in the programs that are constant at run-time, is
more adequately called constant detection. However, in the literature the
term constant propagation is also used to denote the detection problem. We
use the term constant propagation in informal discussions but prefer the term
constant detection in more formal contexts.

Constant propagation is an instance of an automatic program analysis.
There are fundamental limitations to program analysis deriving from unde-
cidability. In particular, constant detection in full generality is undecidable.
Here is a simple reduction for a prototypic imperative programming language.
Suppose we are given a program P and assume that new is a variable not
appearing in P. Consider the little program:

read(new) ; P; write(new).

If P does not terminate, new can be replaced by any constant in the write
statement for trivial reasons, otherwise this transformation is unsound be-
cause the read-statement can read an arbitrary value. Thus, in order to solve
the constant detection problem in its most general form, we have to solve the
halting problem.

Similar games can be played in every universal programming language and
for almost any interesting analysis question. Hence, the best we can hope for
is approximate algorithms. An approximate analysis algorithm does not al-
ways give a definite answer. An approximate constant-detection algorithm,
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Fig. 1.1. A constant not detected by standard constant propagation.

for instance, detects some but in general not all constants in a program. The
standard approach to constant propagation called simple constant propaga-
tion, for instance, does not detect that z is a constant of value 5 at node 7
in the flow graph in Fig. 1.1; cf. Appendix A. It is important that an ap-
proximate analysis algorithm only errs on one side and that this is taken
into account when the computed information is exploited. This is called the
soundness of the algorithm. We take soundness for granted in the discussion
that follows.

Undecidability of the halting problem implies that it is undecidable
whether a given program point can be reached in some execution of the pro-
gram or not. We have seen above by the example of constant detection that
this infects almost every analysis question. It is therefore common to abstract
guarded branching to non-deterministic branching in order to ban this fun-
damental cause of undecidability. This abstraction is built into the use of the
MOP-solution (see Appendix A) as the semantic reference point in dataflow
analysis. This is: instead of the ‘real’ executions, we take all executions into
account that at each branching point choose an arbitrary branch irrespective
of the guard. Clearly, this abstraction makes reachability of program points
decidable. Most analysis questions encountered in practice (and all the ones
we are interested in in this monograph) ask for determining a property valid
in all executions of the programs. For such questions information that is deter-
mined after guarded branching is abstracted to non-deterministic branching is
valid, because more executions are considered. Adopting this abstraction, we
work with non-deterministic programs in this monograph. Non-deterministic
programs represent deterministic programs in which guarded branching has
been abstracted to non-deterministic branching.



