Markus Miiller-Olm

Variations
on Constants

Flow Analysis of Sequential and Parallel Programs

LNCS 3800

e v 2 Springer

Variations
on Constants

Flow Analysis of Sequential and Parallel Programs

AR

@ S p . ger E200603966

Author

Markus Miiller-Olm

Westfilische Wilhelms-Universitit Miinster
Institut fiir Informatik, FB 10
Einsteinstrae 62, 48149 Miinster, Germany
E-mail: mmo @denethor.uni-muenster.de

Library of Congress Control Number: 2006933227

CR Subject Classification (1998): D.2.4, D.2, D.3, F.3
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-45385-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-45385-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN: 11871743 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA

Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3800

Lecture Notes in Computer Science

For information about Vols. 1-4142

please contact your bookseller or Springer

Vol. 4248: S. Staab, V. Svitek (Eds.), Engineering
Knowledge in the Age of the Semantic Web. XIV, 400
pages. 2006. (Sublibrary LNAI).

Vol. 4241: R. Beichel, M. Sonka (Eds.), Computer Vision
Approaches to Medical Image Analysis. X1, 262 pages.
2006.

Vol. 4239: H.Y. Youn, M. Kim, H. Morikawa (Eds.),
Ubiquitous Computing systems. X VI, 548 pages. 2006.

Vol. 4238: Y.-T. Kim, M. Takano (Eds.), Management of
Convergence Networks and Services. XVIII, 604 pages.
2006.

Vol. 4229: E. Najm, J.F. Pradat-Peyre, V.V. Donzeau-
Gouge (Eds.), Formal Techniques for Networked and
Distributed Systems - FORTE 2006. X, 486 pages. 2006.

Vol. 4228: D.E. Lightfoot, C.A. Szyperski (Eds.), Mod-
ular Programming Languages. X, 415 pages. 2006.

Vol. 4227: W. Nejdl, K. Tochtermann (Eds.), Innovative
Approaches for Learning and Knowledge Sharing. X VII,
721 pages. 2006.

Vol. 4224: E. Corchado, H. Yin, V. Botti, C. Fyfe (Eds.),
Intelligent Data Engineering and Automated Learning —
IDEAL 2006. XXVII, 1447 pages. 2006.

Vol. 4223: L. Wang, L. Jiao, G. Shi, X. Li, J. Liu (Eds.),
Fuzzy Systems and Knowledge Discovery. XXVIII,
1335 pages. 2006. (Sublibrary LNAI).

Vol. 4222: L. Jiao, L. Wang, X. Gao, J. Liu, F. Wu (Eds.),
Advances in Natural Computation, Part II. XLII, 998
pages. 2006.

Vol. 4221: L. Jiao, L. Wang, X. Gao, J. Liu, F. Wu
(Eds.), Advances in Natural Computation, Part 1. XLI,
992 pages. 2006.

Vol. 4219: D. Zamboni, C. Kruegel (Eds.), Recent Ad-
vances in Intrusion Detection. XII, 331 pages. 2006.

Vol. 4217: P. Cuenca, L. Orozco-Barbosa (Eds.), Per-
sonal Wireless Communications. XV, 532 pages. 2006.

Vol. 4216: M.R. Berthold, R. Glen, I. Fischer (Eds.),
Computational Life Sciences. XIII, 269 pages. 2006.
(Sublibrary LNBI).

Vol. 4213: J. Fiirnkranz, T. Scheffer, M. Spiliopoulou
(Eds.), Knowledge Discovery in Databases: PKDD
2006. XXII, 660 pages. 2006. (Sublibrary LNAI).

Vol. 4212: J. Fiirnkranz, T. Scheffer, M. Spiliopoulou
(Eds.), Machine Learning: ECML 2006. XXIII, 851
pages. 2006. (Sublibrary LNAI).

Vol. 4211: P. Vogt, Y. Sugita, E. Tuci, C. Nehaniv (Eds.),
Symbol Grounding and Beyond. VIII, 237 pages. 2006.
(Sublibrary LNAI).

Vol. 4209: F. Crestani, P. Ferragina, M. Sanderson (Eds.),
String Processing and Information Retrieval. X1V, 367
pages. 2006.

Vol. 4208: M. Gerndt, D. Kranzlmiiller (Eds.), High Per-
formance Computing and Communications. XXII, 938
pages. 2006.

Vol. 4207: Z. Esik (Ed.), Computer Science Logic. XII,
627 pages. 2006.

Vol. 4206: P. Dourish, A. Friday (Eds.), UbiComp 2006:
Ubiquitous Computing. XIX, 526 pages. 2006.

Vol. 4205: G. Bourque, N. El-Mabrouk (Eds.), Compar-
ative Genomics. X, 231 pages. 2006. (Sublibrary LNBI).

Vol. 4203: F. Esposito, Z.W. Ras, D. Malerba, G. Semer-
aro (Eds.), Foundations of Intelligent Systems. XVIII,
767 pages. 2006. (Sublibrary LNAI).

Vol. 4202: E. Asarin, P. Bouyer (Eds.), Formal Modeling
and Analysis of Timed Systems. XI, 369 pages. 2006.

Vol. 4201: Y. Sakakibara, S. Kobayashi, K. Sato, T.
Nishino, E. Tomita (Eds.), Grammatical Inference: Al-
gorithms and Applications. XII, 359 pages. 2006. (Sub-
library LNAI).

Vol. 4199: O. Nierstrasz, J. Whittle, D. Harel, G. Reg-
gio (Eds.), Model Driven Engineering Languages and
Systems. X VI, 798 pages. 2006.

Vol. 4197: M. Raubal, H.J. Miller, A.U. Frank, M.F.
Goodchild (Eds.), Geographic, Information Science.
X1II, 419 pages. 2006.

Vol. 4196: K. Fischer, L.J. Timm, E. André, N. Zhong
(Eds.), Multiagent System Technologies. X, 185 pages.
2006. (Sublibrary LNAI).

Vol. 4195: D. Gaiti, G. Pujolle, E. Al-Shaer, K. Calvert,
S. Dobson, G. Leduc, O. Martikainen (Eds.), Autonomic
Networking. IX, 316 pages. 2006.

Vol. 4194: V.G. Ganzha, E.W. Mayr, E.V. Vorozhtsov
(Eds.), Computer Algebra in Scientific Computing. XI,
313 pages. 2006.

Vol. 4193: T.P. Runarsson, H.-G. Beyer, E. Burke, J.J.
Merelo-Guervés, L. D. Whitley, X. Yao (Eds.), Parallel
Problem Solving from Nature - PPSN IX. XIX, 1061
pages. 2006.

Vol. 4192: B. Mohr, J.L. Triff, J. Worringen, J. Dongarra
(Eds.), Recent Advances in Parallel Virtual Machine and
Message Passing Interface. XVI, 414 pages. 2006.

Vol. 4191: R. Larsen, M. Nielsen, J. Sporring (Eds.),
Medical Image Computing and Computer-Assisted In-
tervention — MICCAI 2006, Part II. XXXVIII, 981
pages. 2006.

T ————

- ww S

= @ 8 s U

Vol. 4190: R. Larsen, M. Nielsen, J. Sporring (Eds.),
Medical Image Computing and Computer-Assisted In-
tervention — MICCAI 2006, Part I. XXXVVIII, 949
pages. 2006.

Vol. 4189: D. Gollmann, J. Meier, A. Sabelfeld (Eds.),
Computer Security — ESORICS 2006. XI, 548 pages.
2006.

Vol. 4188: P. Sojka, 1. Kopecek, K. Pala (Eds.), Text,
Speech and Dialogue. XIV, 721 pages. 2006. (Sublibrary
LNAI).

Vol. 4187: 1.J. Alferes, J. Bailey, W. May, U. Schwertel
(Eds.), Principles and Practice of Semantic Web Reason-
ing. XI, 277 pages. 2006.

Vol. 4186: C. Jesshope, C. Egan (Eds.), Advances in
Computer Systems Architecture. XIV, 605 pages. 2006.

Vol. 4185: R. Mizoguchi, Z. Shi, FE. Giunchiglia (Eds.),
The Semantic Web - ASWC 2006. XX, 778 pages. 2006.

Vol. 4184: M. Bravetti, M. Niiiez, G. Zavattaro (Eds.),
Web Services and Formal Methods. X, 289 pages. 2006.

Vol. 4183: J. Euzenat, J. Domingue (Eds.), Artificial
Intelligence: Methodology, Systems, and Applications.
XIII, 291 pages. 2006. (Sublibrary LNAI).

Vol. 4182: H.T. Ng, M.-K. Leong, M.-Y. Kan, D. Ji
(Eds.), Information Retrieval Technology. XVI, 684
pages. 2006.

Vol. 4180: M. Kohlhase, OMDoc — An Open Markup
Format for Mathematical Documents [version 1.2]. XIX,
428 pages. 2006. (Sublibrary LNAI).

Vol. 4179: J. Blanc-Talon, W. Philips, D. Popescu, P.
Scheunders (Eds.), Advanced Concepts for Intelligent
Vision Systems. XXIV, 1224 pages. 2006.

Vol. 4178: A. Corradini, H. Ehrig, U. Montanari, L.
Ribeiro, G. Rozenberg (Eds.), Graph Transformations.
XI1, 473 pages. 2006.

Vol. 4177: R. Marin, E. Onaindia, A. Bugarin, J. Santos
(Eds.), Current Topics in Aritficial Intelligence. XIII, 621
pages. 2006. (Sublibrary LNAI).

Vol. 4176: S.K. Katsikas, J. Lopez, M. Backes, S. Gritza-
lis, B. Preneel (Eds.), Information Security. XIV, 548
pages. 2006.

Vol. 4175: P. Biicher, B.M.E. Moret (Eds.), Algorithms
in Bioinformatics. XII, 402 pages. 2006. (Sublibrary
LNBI).

Vol. 4174: K. Franke, K.-R. Miiller, B. Nickolay, R.
Schifer (Eds.), Pattern Recognition. XX, 773 pages.
2006.

Vol. 4173: S. El Yacoubi, B. Chopard, S. Bandini (Eds.),
Cellular Automata. XV, 734 pages. 2006.

Vol. 4172: J. Gonzalo, C. Thanos, M. F. Verdejo, R.C.

Carrasco (Eds.), Research and Advanced Technology for
Digital Libraries. XVII, 569 pages. 2006.

Vol. 4169: H.L. Bodlaender, M.A. Langston (Eds.), Pa-
rameterized and Exact Computation. XI, 279 pages.
2006.

Vol. 4168:Y. Azar, T. Erlebach (Eds.), Algorithms — ESA
2006. XVIII, 843 pages. 2006.

Vol. 4167: S. Dolev (Ed.), Distributed Computing. XV,
576 pages. 2006.

Vol. 4166: J. Gorski (Ed.), Computer Safety, Reliability,
and Security. XIV, 440 pages. 2006.

Vol. 4165: W. Jonker, M. Petkovié (Eds.), Secure, Data
Management. X, 185 pages. 2006.

Vol. 4163: H. Bersini, J. Carneiro (Eds.), Artificial Im-
mune Systems. XII, 460 pages. 2006.

Vol. 4162: R. Kralovi¢, P. Urzyczyn (Eds.), Mathemat-
ical Foundations of Computer Science 2006. XV, 814
pages. 2006.

Vol. 4161: R. Harper, M. Rauterberg, M. Combetto

(Eds.), Entertainment Computing - ICEC 2006. XXVII,
417 pages. 2006.

Vol. 4160: M. Fisher, W.v.d. Hoek, B. Koneyv, A. Lisitsa
(Eds.), Logics in Artificial Intelligence. XII, 516 pages.
2006. (Sublibrary LNAI).

Vol. 4159: J. Ma, H. Jin, L.T. Yang, J.J.-P. Tsai (Eds.),
Ubiquitous Intelligence and Computing. XXII, 1190
pages. 2006.

Vol.4158: L.T. Yang, H. Jin, J. Ma, T. Ungerer (Eds.), Au-
tonomic and Trusted Computing. XIV, 613 pages. 2006.
Vol.4156: S. Amer-Yahia, Z. Bellahsene, E. Hunt, R. Un-
land, J.X. Yu (Eds.), Database and XML Technologies.
IX, 123 pages. 2006.

Vol. 4155: O. Stock, M. Schaerf (Eds.), Reasoning, Ac-
tion and Interaction in Al Theories and Systems. X VIII,
343 pages. 2006. (Sublibrary LNAI).

Vol. 4154: Y.A. Dimitriadis, I. Zigurs, E. Gémez-
Sanchez (Eds.), Groupware: Design, Implementation,
and Use. XIV, 438 pages. 2006.

Vol.4153:N. Zheng, X. Jiang, X. Lan (Eds.), Advances in
Machine Vision, Image Processing, and Pattern Analysis.
XIII, 506 pages. 2006.

Vol. 4152: Y. Manolopoulos, J. Pokorny, T. Sellis (Eds.),
Advances in Databases and Information Systems. XV,
448 pages. 2006.

Vol. 4151: A. Iglesias, N. Takayama (Eds.), Mathemati-
cal Software - ICMS 2006. XVII, 452 pages. 2006.
Vol. 4150: M. Dorigo, L.M. Gambardella, M. Birattari,
A. Martinoli, R. Poli, T. Stiitzle (Eds.), Ant Colony Opti-
mization and Swarm Intelligence. X VI, 526 pages. 2006.
Vol. 4149: M. Klusch, M. Rovatsos, T.R. Payne (Eds.),
Cooperative Information Agents X. XII, 477 pages.
2006. (Sublibrary LNAI).

Vol. 4148: J. Vounckx, N. Azemard, P. Maurine (Eds.),
Integrated Circuit and System Design. XVI, 677 pages.
2006.

Vol. 4147: M. Broy, L.H. Kriiger, M. Meisinger (Eds.),

Automotive Software — Connected Services in Mobile
Networks. XIV, 155 pages. 2006.

Vol. 4146: J.C. Rajapakse, L. Wong, R. Acharya (Eds.),
Pattern Recognition in Bioinformatics. XIV, 186 pages.
2006. (Sublibrary LNBI).

Vol. 4144: T. Ball, R.B. Jones (Eds.), Computer Aided
Verification. XV, 564 pages. 2006.

Vol. 4143: R. Lammel, J. Saraiva, J. Visser (Eds.), Gener-
ative and Transformational Techniques in Software En-
gineering. X, 471 pages. 2006.

X3t) 27

Foreword

By its nature, automatic program analysis is the art of finding adequate com-
promises. Originally, in the 1970s, program analysis aimed at deriving precon-
ditions for typically obviously correct optimizing program transformations.
Heuristics for loop optimizations were popular, which in particular concerned
the treatment of multi-dimensional arrays. The limits of these heuristics-
based approaches became apparent when looking at the combined effects of
optimizations — in particular in the context of concurrency. Since then, the
loss of confidence in optimizing compilers has been fought by semantics-based
methods that come with explicitly stated power and limitations.

A particularly natural and illustrative class of program analyses aims at
detecting program constants, i.e. occurrences of program expressions which
are guaranteed to evaluate to the same value in every run. This problem is
essentially as hard as program verification in its full generality, though there
are interesting subclasses which can be solved effectively or even efficiently.

Markus Miiller-Olm investigates particularly interesting variations of such
classes which are characterized by varying strengths of interpretation and by
increasingly complex data and control structures. In particular, he considers
in detail three main classes of problems:

— The purely sequential situation, where his ideal theoretic treatment of poly-
nomial constants is really outstanding. It is a delight to follow the elegant
algebraic development!

— The treatment of copy constants for fork-join parallel programs. This turns
out to be very hard already in restricted settings like acyclic programs, and
becomes undecidable in the context of procedures.

— A variation of the second class, where he waives the usual atomicity prop-
erties during execution. At first sight it is really surprising that this dras-
tically simplifies the analysis problem. However, a closer look reveals that
the decrease in algorithmic complexity goes hand in hand with a decrease
in quality — as the waived atomicity is vital for a decent control of parallel
computation.

Markus Miiller-Olm succeeds in significantly improving the known results
for the scenarios considered. However, what makes the book very special
is the impressive firework of elaborate methods and powerful techniques.

VI Foreword

Everybody working in the field will profit from passing from scenario to
scenario and experiencing Markus Miiller-Olm’s mastership of choosing the
adequate means for each of the considered analysis problems: one leaves with
a deep understanding of the inherent underlying differences and in particular
of the complexity of modern programming concepts in terms of the hardness
of the implied analysis problem.

July 2006 Bernhard Steffen

Preface

Computer science is concerned with design of programs for a wide range of
purposes. We are, however, not done once a program is constructed. For vari-
ous reasons, programs need to be analyzed and processed after their construc-
tion. First of all, we usually write programs in high-level languages and before
we can execute them on a computer they must be translated into machine
code. In order to speed up computation or save memory, optimizing compilers
perform program transformations relying heavily on the results of program
analysis routines. Secondly, due to their ever-increasing complexity, programs
must be validated or verified in order to ensure that they serve their intended
purpose. Program analysis (in a broad sense) is concerned with techniques
that automatically determine run-time properties of given programs prior to
run-time. This includes flow analysis, type checking, abstract interpretation,
model checking, and similar areas.

By Rice’s theorem [79, 31], every non-trivial semantic question about pro-
grams in a universal programming language is undecidable. At first glance,
this seems to imply that automatic analysis of programs is impossible. How-
ever, computer scientists have found at least two ways out of this problem.
Firstly, we can use weaker formalisms than universal programming languages
for modeling systems such that interesting questions become decidable. Im-
portant examples are the many types of automata studied in automata the-
ory and Kripke structures (or labeled transition systems) considered in model
checking. Secondly, we can work with approrimate analyses that do not al-
ways give a definite answer but may have weaker (but sound) outcomes.
Approximate analyses are widely used in optimizing compilers.

An interesting problem is to assess the precision of an approximate anal-
ysis. One approach is to consider an abstraction of programs or program
behavior that gives rise to weaker but sound information and to prove that
the analysis yields exact results with respect to this abstraction (cf. Fig. 0.1).
The loss of precision can then be attributed to and measured by the em-
ployed abstraction. This scheme has been used in the literature in a number
of scenarios [40, 86, 43, 87, 88, 24].

The scheme of Fig. 0.1 allows us to make meaningful statements on ap-
proximate analysis problems independently of specific algorithms: by devising
abstractions of programs, we obtain well-defined weakened analysis problems

VIII Preface

Original Abstraction | Weakened
problem problem

Approximate results Exact results

Analysis

Fig. 0.1. Using an abstraction to assess the precision of an approximate analysis.

and we can classify these problems with the techniques of complexity and
recursion theory. The purpose of such research is twofold: on the theoretical
side, we gain insights on the trade-off between efficiency and precision in the
design of approximate analyses; on the practical side, we hope to uncover
potential for the construction of more precise (efficient) analysis algorithms.

In this monograph we study weakened versions of constant propagation.
The motivation for this choice is threefold. Firstly, the constant-propagation
problem is easy to understand and of obvious practical relevance. Hence,
uncovering potential for more precise constant-propagation routines is of
intrinsic interest. Secondly, there is a rich spectrum of natural weakened
constant-propagation problems. On the one hand, we can vary the set of al-
gebraic operators that are to be interpreted by the analysis. On the other
hand, we can study the resulting problems in different classes of programs
(sequential or parallel programs, with or without procedures, with or without
loops etc.). Finally, results for the constant-propagation problem can often
be generalized to other analysis questions. For instance, if as part of the ab-
straction we decide not to interpret algebraic operators at all, which leads to
a problem known as copy-constant detection, we are essentially faced with an-
alyzing transitive dependences in programs. Hence, results for copy-constant
detection can straightforwardly be adapted to other problems concerned with
transitive dependences, like faint-code elimination and program slicing.

In this monograph we combine techniques from different areas such as
linear algebra, computable ring theory, abstract interpretation, program ver-
ification, complexity theory, etc. in order to come to grips with the considered
variants of the constant-propagation problem. More generally, we believe that
combination of techniques is the key to further progress in automatic analy-
sis, and constant-propagation allows us to illustrate this point in a theoretical
study.

Let us briefly outline the main contributions of this monograph:

A hierarchy of constants in sequential programs. We explore the complex-
ity of constant-propagation for a three-dimensional taxonomy of constants
in sequential imperative programs that work on integer variables. The first
dimension restricts the set of interpreted integer expressions. The second di-

Preface IX

mension distinguishes between must- and may-constants. May-constants ap-
pear in two variations: single- and multiple-valued. May-constants are closely
related to reachability. In the third dimension we distinguish between pro-
grams with and without loops. We succeed in classifying the complexity of the
problems almost completely (Chapter 2). Moreover, we develop (must-)con-
stant-propagation algorithms that interpret completely all integer operators
except for the division operators by using results from linear algebra and
computational ring theory (Chapter 3).

Limits for the analysis of parallel programs. We study propagation of copy
constants in parallel programs. Assuming that base statements execute atom-
ically, a standard assumption in the program verification and analysis lit-
erature, we show that copy-constant propagation is undecidable, PSPACE-
complete, and NP-complete if we consider programs with procedures, without
procedures, and without loops, respectively (Chapter 4). These results indi-
cate that it is very unlikely that recent results on efficient exact analysis of
parallel programs can be generalized to richer classes of dataflow problems.

Abandoning the atomic execution assumption. We then explore the conse-
quences of abandoning the atomic execution assumption for base statements
in parallel programs, which is the more realistic setup in practice (Chap-
ters 5 to 9). Surprisingly, it turns out that this makes copy-constant detection,
faint-code elimination and, more generally, analysis of transitive dependences
decidable for programs with procedures (Chapter 8) although it remains in-
tractable (NP-hard) (Chapter 9). In order to show decidability we develop a
precise abstract interpretation of sets of runs (program executions) (Chap-
ter 7). While the worst-case running time of the developed algorithms is
exponential in the number of global variables, it is polynomial in the other
parameters describing the program size. As well-designed parallel programs
communicate on a small number of global variables only, there is thus the
prospect of developing practically relevant algorithms by refining our tech-
niques.

These three contributions constitute essentially self-contained parts that
can be read independently of each other. Figure 0.2 shows the assignment of
the chapters to these parts and indicates dependences between the chapters.
For clarity, transitive relationships are omitted.

Throughout this monograph we assume that the reader is familiar with
the basic techniques and results from the theory of computational complexity
[72, 36], program analysis [70, 2, 30, 56], and abstract interpretation [14,
15]. A brief introduction to constraint-based program analysis is provided in
Appendix A.

Acknowledgments

This monograph is a revised version of my habilitation thesis (Habilitations-
schrift), which was submitted to the Faculty of Computer Science (Fach-

X Preface

Overview Chapter 1

Sequential constant hierarchy [Chapter 2 }—»[Chapter 3 l

Limits of parallel flow analysis Chapter 4
AbandF)nlng e atf)mlc Chapter 5 Chapter 6 Chapter 7
execution assumption

Y |
| Chapter 9 | | Chapter 8 |

Conclusion and future research Chapter 10

Fig. 0.2. Dependence between the chapters.

bereich Informatik) of Dortmund University in August 2002 and accepted in
February 2003. I would like to thank Bernhard Steffen, head of the research
group on Programming Systems and Compiler Construction at Dortmund
University, in which I worked from 1996, for continual advice and support in
many ways. I am also grateful to Oliver Riithing and Helmut Seidl for our
joint work. I thank all three and Jens Knoop for many helpful discussions
and Hardi Hungar for insightful comments on a draft version. I thank the
referees of my habilitation thesis, Javier Esparza, Neil Jones, and Bernhard
Steffen, for their time and enthusiasm.

From October 2001 until March 2002 I worked at Trier University, which
allowed me to elaborate the third part free from teaching duties. I thank
Helmut Seidl and the DAEDALUS project, which was supported by the Eu-
ropean FP5 programme (RTD project IST-1999-20527), for making this visit
possible.

Dortmund, June 2005 Markus Miiller-Olm

Table of Contents

1. Introduction........ i 1
2. A Hierarchyof Constants.........................oivunn.. 13
2.1 A Taxonomy of Constantsc.cvvuviinennennon.. 16
2:1:1 Flow Graphs.: ;usmssminsossmimsspsoniasaasss sois 16

2.1.2 May- and Must-Constants 17

2.1.3 Weakened Constant Detection Problems............. 19

2.1.4 Classes of Integer Constants 21

22 KnownResults............coiiiiiiiiiiiiiiii.., 22

2.3 New Undecidability Results................ccooviiiinn.. 24

2.4 New Intractability Results 25

2.5 SUMMATY . .ottt e e e 29

3. Deciding Constants by Effective Weakest Preconditions... 31
3.1 Presburger and Polynomial Constants..................... 32

3.2 Presburger-Constant Detection at a Glance 33

3.3 A Generic Algorithm............ccooiiiiiiiiiniiia.. 37

3.4 Detection of Presburger Constants........................ 40

3.5 A Primer on Computable Ideal Theory 43

3.6 More About Z[Z1,...,Tn] ~vvrirri 45
3.6.1 Z[z1,...,z,) as a Complete Lattice 45

3:0.2 ZETOS wscuimrmmsminss0smaimine s asme s ims im0 m i 45

3.6.3 Substitutionol 46

3.6.4 Projection......... ... i 46

3.7 Detection of Polynomial Constants 47

3.8 Conclusionttt 49

4. Limits of Parallel Flow Analysis 53
4.1 A Motivating Example, 55

4.2 Parallel Programsccoiiiiiiiiinininnnn 56

4.3 Interprocedural Copy-Constant Detection.................. 57
4.3.1 Two-Counter Machines................coovevvnn. .. 58

4.3.2 Constructing a Program........................... 59

4.3.3 Correctness of the Reduction 62

XII

Table of Contents
4.4 Intraprocedural Copy-Constant Detection 62
4.5 Copy-Constant Detection in Loop-Free Programs 66
4.6 Beyond Fork/Join Parallelism 67
4.7 Owicki/Gries-Style Program Proofs 67
4.8 Correctness of the Reduction in Section 4.3 68
4.8.1 Enriching the Program 68
4.8.2 The Proof OQutlinesccovuueoiiin... 69
4.8.3 Interference Freedomcccvuunoni... 72
4.9 Correctness of the Reduction in Section 4.4 73
4.9.1 Enriching the Program 73
4.9.2 An Auxiliary Predicate............................ 73
4.9.3 Proof Qutlinefor mpcoovvveen . 74
4.9.4 Proof Qutline for my(r)ovvv v, .. 75
4.9.5 Proof Outline for Main 76
4.9.6 Interference Freedom 7
4.10 Conclusionoouuii 78
Parallel Flow Graphs 81
5.1 Parallel Flow Graphs 82
5.2 Operational Semanticscoiii. .. 84
5.3 Atomic Runs................ 86
5.4 The Run Sets of Ultimate Interest 87
9.5 The Constraint Systemso ... 88
5.5.1 Same-Level Runs......................... 88
5.5.2 Inverse Same-Level Runs 90
5.5.3 Two Assumptions and a Simple Analysis 91
554 ReachiBB RUNS . uvvuscirvsvnnmerevnnsonsssns cusns 92
5.5.5 Terminating Runs 94
5.5.6 BridgingRuns 94
9.5.7 The General Caseccc.vvuiviii . 96
9.6 Discussiono i 98
Non-atomic Execution 101
6.1 Modeling Non-atomic Execution by Virtual Variables 103
6.2 A Motivating Example 105
6.3 The Domain of Non-atomic Run Sets 106
6.3.1 Base Statements, 107
6.3.2 Sequential Composition 108
6.3.3 Interleaving Operator 108
B34 ProOpeEator ..ussscsims 0510 cmemecnrmosmsmmrms cms 109
6.3.5 Post-operator i 109

6.4 ConClUSION ;ucvs vuimsunmnnaanmennenesasmsssssssssnnn, . 109

Table of Contents XIII

7. Dependence Tracescoiiiiiiiiiiiiiiiniiineren.. 111
7.1 Transparency and Dependences 113

7.2 Dependence Tracesc.coiuniiiiiiiiiiinnennennas 114

7.3 Implication Orderot 116

7.4 Subsumption Order............ ..ot 117

7.5 A Lattice of Antichaing . :c:ms swsws cmsms smsmpsnsswsme s 118

7.6 Short Dependence Traces..........coovviiiiiiiiiiiennn, 121

7.7 The Abstract Domainoouiuiiennnen. 124

7.8 Pre-operator.........c.ceeiiiiniiniiiiiiiiiiiiiiieinans 126

7.9 Post-0peratoriuiniiiiiiiiiii i 128
7.10 Sequential Compositionccoviiiiiiiiiin.. 128
7.11 Interleaving ovvrve i e 130
7.11.1 Complementary Dependence Traces................. 131

7.11.2 Interleaving Operatorccoviviiinn... 132

7.11.3 Soundness Lemmascooiiiiiiiii 132

7.11.4 Completeness Lemmasoivn... 136

7.11.5 Proof of Theorem 7.11.1......... oo, 139

712 Base Edgeso 140
7.13 Running Time i i 141
TFold DISCUSSION s psms smsms smsmeiminriRITF IO MFEN WS HE L8P 142

8. Detecting Copy Constants and Eliminating Faint Code ... 145
8.1 Copy-Constant Detectionccciiiiio... 146

8.2 Faint-Code Elimination o i 148

83 Rumning Time i 150

8.4 Conclusionc.oiiiiiiiiini e 152

9. Complexity in the Non-atomic Scenario 153
9.1 The SAT-reductioncciiiriiniinnenennennnn. 154

9.2 Towards Stronger Lower Bounds 156
9.2.1 Assignment Statements That Propagate Twice 157

9.2.2 Propagating Runs of Exponential Length............ 159

9.3 SUMMATIY s sminsensmssvsmmsmsasins §5i5s s@ins s o ¥usas 160

10: Conclusion .:u: isicicniis imsanius shimiabi®s saiE@idnins emias 161
10.1 Future Research 163

A. A Primer on Constraint-Based Program Analysis......... 165

REIerences . :ninuin s iR Himieni s @i n: sHiEe i BiHEL I EHIBams s 173

1. Introduction

Constant propagation is one of the most widely used optimizations in practice
(cf. [2, 30, 56]). Its goal is to replace expressions that always yield a unique
constant value at run-time by this value. This transformation can both speed
up execution and reduce code size by replacing a computation or memory
access by a load-constant instruction. Often constant propagation enables
powerful further program transformations. An example is branch elimination:
if the condition guarding a branch of a conditional can be identified as being
constantly false, the whole code in this branch is dynamically unreachable
and can be removed.

The term constant propagation is somewhat reminiscent of the technique
used in early compilers: copying the value of constants in programs (like in
x := 42) to the places where they are used. The associated analysis problem,
to identify expressions in the programs that are constant at run-time, is
more adequately called constant detection. However, in the literature the
term constant propagation is also used to denote the detection problem. We
use the term constant propagation in informal discussions but prefer the term
constant detection in more formal contexts.

Constant propagation is an instance of an automatic program analysis.
There are fundamental limitations to program analysis deriving from unde-
cidability. In particular, constant detection in full generality is undecidable.
Here is a simple reduction for a prototypic imperative programming language.
Suppose we are given a program P and assume that new is a variable not
appearing in P. Consider the little program:

read(new) ; P; write(new).

If P does not terminate, new can be replaced by any constant in the write
statement for trivial reasons, otherwise this transformation is unsound be-
cause the read-statement can read an arbitrary value. Thus, in order to solve
the constant detection problem in its most general form, we have to solve the
halting problem.

Similar games can be played in every universal programming language and
for almost any interesting analysis question. Hence, the best we can hope for
is approximate algorithms. An approximate analysis algorithm does not al-
ways give a definite answer. An approximate constant-detection algorithm,

2 1. Introduction

Fig. 1.1. A constant not detected by standard constant propagation.

for instance, detects some but in general not all constants in a program. The
standard approach to constant propagation called simple constant propaga-
tion, for instance, does not detect that z is a constant of value 5 at node 7
in the flow graph in Fig. 1.1; cf. Appendix A. It is important that an ap-
proximate analysis algorithm only errs on one side and that this is taken
into account when the computed information is exploited. This is called the
soundness of the algorithm. We take soundness for granted in the discussion
that follows.

Undecidability of the halting problem implies that it is undecidable
whether a given program point can be reached in some execution of the pro-
gram or not. We have seen above by the example of constant detection that
this infects almost every analysis question. It is therefore common to abstract
guarded branching to non-deterministic branching in order to ban this fun-
damental cause of undecidability. This abstraction is built into the use of the
MOP-solution (see Appendix A) as the semantic reference point in dataflow
analysis. This is: instead of the ‘real’ executions, we take all executions into
account that at each branching point choose an arbitrary branch irrespective
of the guard. Clearly, this abstraction makes reachability of program points
decidable. Most analysis questions encountered in practice (and all the ones
we are interested in in this monograph) ask for determining a property valid
in all executions of the programs. For such questions information that is deter-
mined after guarded branching is abstracted to non-deterministic branching is
valid, because more executions are considered. Adopting this abstraction, we
work with non-deterministic programs in this monograph. Non-deterministic
programs represent deterministic programs in which guarded branching has
been abstracted to non-deterministic branching.

