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PREFACE

In the late 1970’s, Mike Freedman and I sketched an argument using immersion theory
for showing that 25° = Z. In 1982-83, lain Aitchison and I worked out new proofs
and a reorganization of Qipin = 7, p1 = 30, and Rohlin’s theorem. In the last 5 years,
further simplifications including a yet easier proof of Qipi“ = Z have been found.

A first draft of Chapters XII and XIII was written at IMPA in Rio de Janeiro in fall
1982 and other bits at the University of Maryland in spring 1983, but the bulk of the
writing was done at S.-S. Chern’s suggestion at the Nankai Institute of Mathematics
in May 1987. I was very ably assisted by Bao-zhen Yu, who found some gaps and
corrected many errors, not all minor. I am indebted to Charles Livingston and the
topology seminar at Indiana who found further gaffes in Fall 1987, and to Berkeley
students, particularly Chris Herald, for checking the final version.

Recent work with Larry Taylor on Pin structures and non-orientable generalizations
of Rohlin’s Theorem has fed back into some further sharpenings of Chapter IV and the
proof of Rohlin’s Theorem.

Thanks to my collaborators, to IMPA, Maryland, and especially Nankai for their
warm hospitality, to Faye Yeager for an excellent TeX manuscript, and to Deb Craig
for help with the many figures.
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INTRODUCTION

When I began to think about 4-manifolds in 1973, the basic theorems included the
Whitehead—Milnor theorem on homotopy type [Wh], [Milnorl], Rohlin’s Theorem
[Rohlin], Q5° = Z, Qipin = 7, the Hirzebruch index theorem p; = 30, and Wall’s the-
orems on diffeomorphisms and h-cobordism [Wall1l] and [Wall2]. These theorems were
untranslated ([Rohlin]) or unreadable ([Wh]), or were special cases of big machines in
algebraic topology (25° = Z, QP™ = Z, p; = 30), or, even though accessible, could,
with hindsight, use streamlining (Wall’s theorems).

In the early 1970’s, Casson and Rohlin independently gave geometric proofs of Rohlin’s
Theorem and improvements followed ([F-K] and Y. Matsumoto and Guillou and Marin
in [G-M]). Rohlin’s proof of 2§° = Z was translated [G-M] and lectured on by Mor-
gan and others, with the latest version in [Melvin]|. But a geometric, low dimensional
proof of Qipi“ was missing. The algebraic topological proofs are powerful, and beau-
tiful mathematics in their own right, but there ought to be proofs of the fundamental
4-manifold theorems which belong to the field of 4-dimensions (or less), and prepare the
student in the geometric side of the theory.

We give a geometric proof of Q§C = Z starting with an immersion of M* into R®; it is
different but not necessarily better than the proofs mentioned in the previous paragraph.
It’s unique virtue was that Iain Aitchison and I were able to make it work for 25", but
not without some difficulties. Recently, a simple proof of Q{P'® = Z turned up, which
only uses the fact (not the method of proof) that M* bounds if p;(M) = 0. This work
led to an improved proof of Rohlin’s theorem using spin structures. These proofs are
first presented here. Handlebody theory is also exploited to streamline some proofs,
e.g., Wall’s theorems, and a few new wrinkles are included here and there.

Chapters XII-XIII give a sketch of Casson’s and Freedman’s work on topologic han-
dles and 4-manifolds. These chapters might profitably be read as an introduction to
Freedman’s fundamental paper [Freedman1] or concurrently with Casson’s 1974 notes
in [G-M]. Chapter XIV contains constructions of exotic smooth structures on R*%, a
countable number which do not imbed in S* and one that does imbed in S*.

A reader needs a good, intuitive understanding of smooth manifolds and bundles,
knowledge of the simplest form of the immersion theorem (perhaps best read in [H-P]),
and a decent understanding of characteristic classes as applied to low dimensions using
the obstruction theory definition [M-S, chapter 12].

Framed links are used as the basic way of describing 4-manifolds; Chapter I covers
this material. Homotopy type, intersection forms, characteristic classes and the index
fall in Chapter II. Chapter III states classification theorems as of July 1987.

Spin structures are tricky fellows, especially over S! and surfaces, and they are pre-
sented carefully, I hope, in Chapter IV, with a fundamental example in V. Chapters VI-
IX focus on the proofs that 2§ = Z, QP = Z, and p; = 30, beginning with the study
of immersions and singular sets in VI. The remaining chapter titles are self explanatory.



I1.3.1 refers to Theorem or Lemma 1 in §3 of Chapter II; 3.1 refers to Theorem or
Lemma 1 in §3 of the same chapter. Similarly with figures. [J marks the end of a proof.



I. HANDLEBODIES AND FRAMED LINKS

§1. Handlebodies.

A handlebody decomposition of a compact manifold M ™ is a sequence B™ = M, C
M, C M; C --- C My = M where M; is obtained from M;_; by adding a k;-handle,
that is, M; = M;_, y B x B™~*i where f; : 0B% x B™~% — OM;_, is an imbedding

which is called the attaching map (Figure 1.1). My = B™ = B® x B™ is a zero-handle
and there may be others. Handlebody decompositions exist for the categories TOP, PL
and DIFF except for the case of 4-dimensional topological manifolds which are handle-
bodies iff they are smoothable (see [K-S] and [Quinn]). We are only interested in the
smooth case where f; has to be a smooth imbedding. Then M; has “corners” where the
k;-handle was attached (Figure 1.1), but the phrase “corners can be smoothed” has
been a phrase that I have heard for 30 years, and this is not the place to explain it.

Figure 1.1

Smooth handlebody decompositions (handlebodies for short) correspond to Morse
functions h : M — R (which have non-degenerate critical points at different levels). A
critical point of h corresponds to 0 x 0 € B¥: x B™~* and B* x 0 is the descending
manifold and 0 x B™~Fi is the ascending manifold.

According to [Cerfl], any two Morse functions hg, h; are homotopic by an arc h; of
functions, ¢ € [0,1], which are Morse functions for all but finitely many ¢, at which h,
either has two critical points at the same level or a birth or a death occurs.

A death corresponds to a pair of handles cancelling and a birth to the creation of a
pair, as is shown in Figure 1.2.
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Thus, as we homotop ko to hy, the hy move through Morse functions, which corre-
spond to isotopy of the attaching maps f;, and whenever a birth or death is passed, a
pair of handles are either created or cancelled.

We can summarize this by

THEOREM 1.1. Any two smooth handlebody decompositions of M™ are related by
isotopy of the attaching maps and creation or cancellation of handle pairs.

It should be noted that handles can always be attached in the order of their indices.
For if a (k+1)-handle B¥*! x B™—*-1 is attached first and then a k-handle B* x B™—k,
then by transversality the attaching sphere of the k-handle, S¥~1 x 0 misses the cosphere
of the (k + 1)-handle, 0 x S™~%-2_ (since k—1 4+ m—k—2 < m—1) and hence can be
isotoped off of the (k + 1)-handle and added first. Moreover, the same argument shows
that two k-handles can be attached in either order.

§2. Framed Links.

In dimension 4 we will visualize handlebodies by drawing their attaching maps, when
possible, in M, = dB* = S3.

A 1-handle is attached by S° x B*, so we draw a pair of 3-balls in S? as in Figure 2.1.
Often it will be convenient to denote a 1-handle by an unknotted circle with a “dot”
on it. The circle bounds an obvious disk, and if we push that disk into B* (so that
(B?,S') — (B*,S?) is a proper imbedding) and remove a neighborhood of it, then the
remainder is S x B3, the result of adding a 1-handle to B%. Thus arcs that go over the
1-handle should be drawn so as to go through the dotted circle.
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Figure 2.1

We draw the attaching map of a 2-handle, f(S* x B?), by drawing f(S* x0), a knot in
53, and labeling the knot with an integer, its framing. Let F'2 be a surface in B* which
f(S! x 0) bounds. Then f(S* x B?) corresponds to the zero framing of f(S?* x 0) if it is
the trivialization of the normal bundle of f(S? x 0) which extends to the normal bundle
of F? in Bt. Equivalently, let F? be a Seifert surface for f(S* x 0) in S*; then the
zero-framing is the one for which f(S! x (1,0)) is tangent to F?. Framing k means that
f(S* x B?) differs from the zero framing by k full twists around f(S* x 0) (right-handed
for k > 0, left for k < 0), that is, by k € Z = m1(S0(2)).

Figure 2.2 gives some examples where we have drawn f(S? x 0) and f(S? x e;) for
e; = (1,0) € B2,

k full
@ @ @ @twnts
framing 0 framing 1 framing -1 framing k

@ @\)
F(s'x0) framing 0
Figure 2.2

Sometimes the attaching circle of a 2-handle goes over a 1-handle; it is drawn as in
Figure 2.3.



& C

Figure 2.3

Then the attaching circle does not bound a Seifert surface in B*, so to describe the
framing we could draw f(S! X e;). However, it is more convenient to fix a dotted line
joining the two feet of the 1-handle and then to assume that f(S? x 0) goes parallel to
the dotted line rather than over the 1-handle; now f(S! x 0) has a Seifert surface and
a well defined zero framing. One has to be careful, when isotoping attaching maps, not
to cross the dotted line, for that changes the zero-framing just as it would if we changed
a crossing in f(S?! x 0) (see Figure 2.4).

Y

/ 0

W ]

Figure 2.4

If f(S! x 0) goes algebraically zero times over the 1-handle, then it has a Seifert
surface and the framing is defined without the use of a dotted line.

When we switch notation for the 1-handle to the circle with a dot, then we place the
dotted circle so as to link the dotted line, and draw all the 2-handle attaching circles
parallel to the dotted line through the dotted circle (Figure 2.3).

Adding a 1-handle to B* results in S! x B® with boundary S! x S2. Adding a 2-handle
to an unknot with zero framing gives S? x B?, also with boundary S x S2. Handles
which are attached later cannot tell what the S! x S? is the boundary of. Switching
the 1-handle to the 2-handle is the same as doing surgery on the obvious S ! defined by



the 1-handle with the trivial framing. The next lemma follows as an exercise from this
discussion.

LEMMA 2.1. Surgery on the S! defined by a 1-handle corresponds to removing the
dot from the dotted circle and replacing it with a zero (if the trivial framing of the
normal bundle of S was used for surgery).

If there are no 1-handles, then there is an obvious linking matrix A associated with
the 2-handles: a;; is the linking number of the i** and jt* attaching circles which are
oriented by the standard counterclockwise orientation of 8B2. a;; is just the framing of
the i* handle. A is symmetric, and later will be seen to be the intersection matrix on
the second homology of the 4-manifold (II, §1).

If there are 1-handles, we can draw them as dotted circles (oriented arbitrarily) and
form an extended linking matrix A’ where a;; for a dotted circle is defined to be zero
(as if surgery on the 1-handle was performed) and a;; for a 1- and 2-handle is just the
algebraic number of times the 2-handle goes over the 1-handle (or the linking between
the dotted circle and the attaching circle). Two 1-handles must always be geometrically
unlinked. So the extended linking matrix A’ has the form

1-handles { ( 0 | = _ 4
2-handles { * | * '

3-handles are attached by an imbedding f : S2 x B! — OM;. The framing is uninter-
esting, but 2-spheres are hard to draw, especially non-trivial ones. (A complicated one
is drawn in [H-K-K], §4.)

However, the 3-handles and 4-handle of a closed M* together are diffeomorphic to

k k

S x B® (a 0-handle and k 1-handles), with boundary §S* x S2. So the 3- and 4-handles
k

are attached by a diffeomorphism of §(S* x S%). But any such diffeomorphism extends

over ’l;(Sl x B?) [L-P], so it makes no difference how the 3- and 4-handles are attached.
For the case M # 0, [Trace2] gives useful information on attaching 2-handles.

Given a framed link L, perhaps containing dotted circles, let M} denote the
4-manifold obtained by adding handles to the link L. This is a smooth 4-manifold

k
with boundary M. However, if OMy is S or §S! x S2, then we can close up My,
by adding a 4-handle and perhaps 3-handles. In this case M [ may refer to either the
manifold with boundary or the closed 4-manifold, according to context.

Given L, it is useful to know how to describe the double of My, along M. In this
case, the 0-handle generates a 4-handle, and 1-handles generate 3-handles, and each
2-handle generates another 2-handle which is added to the co-circle, 0 x 8B2, of the
generating 2-handle. This co-circle gets a framing from its neighboring co-circles * x B 2
which do not link 8 B2, so the framing is zero. Thus we have shown

LEMMA 2.2. Given My, the framed link for the double DM}, is obtained by adding
unknotted circles, linking each 2-handle geometrically once, with framing zero as in
Figure 2.5.
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The 4-sphere is the empty link and S2? x S2, S? %X S? and +CP? are drawn in
Figure 3.1. To see these more clearly, note that the B2-bundle £ over S? with Euler
class k (actually k times the generator of H%(S?;Z)) can be described by adding a
2-handle B? x B? to an unknot in B* (thought of as 8B? x 0 in B x B? = B*) with
framing k; the S? is B2 x 0UB? x 0 and the framing gives the twist in {x. Then £CP?is
+¢; = €41 with a 4-handle attached to 8¢+1 = S*. The non-trivial S2-bundle over 52,

S2? X S2?, has a fiber with trivial normal bundle and a section with non-trivial normal
bundle (the left and right components of the link).
For a really non-trivial example of a 1-connected, closed My (it is trivial to draw non-

closed examples—any link will do—but rarely is the boundary equal to ’65 1 x 5?%), we
must turn to the Kummer surface. It is a complex surface with many definitions of the
underlying 4-manifold, e.g., any nonsingular quartic in CP?3, say z* + y* + z* + w* =
0, (see [H-K-K]). Figure 3.2 shows a framed link for it with no 1- or 3-handles. It
consists of a trefoil knot with framing zero and a small linking circle with framing —2.
“On” a Seifert surface for the trefoil knot, draw twenty circles, weaving as drawn, all
with framing —2. These twenty-two 2-handles, with a 0- and a 4-handle, describe the
Kummer surface.

Our examples do not require 1- and 3-handles. It is not known whether a simply
connected, closed 4-manifold needs 1 and/or 3-handles, but the Dolgachev surface ([H-
K-K] §§3,4 and [Don3)) is a good candidate for needing them.

If 8M # 0, then simply connected 4-manifolds may require 1 or 3-handles; for ex-
ample any contractible 4-manifold other than B* must have 1 or 3-handles. Casson
gave a construction that produces contractible 4-manifolds that need 1-handles specif-
ically ([Kirby2] Problem 4.18). Suppose that a contractible M* can be made without
1-handles. Then, inverting the Morse function, M* can be constructed from &M by
adding the same number of 1-handles and 2-handles, and one 4-handle. It follows that
71(8M) can be killed by adding the same number of generators and relations. But a
theorem of Gerstenhaber and Rothaus [G-R] states that a finitely presented group with
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a representation into a linear group cannot be killed with an equal number of generators
and relations. So any contractible M* whose 7;(8M) has such a representation requires
1-handles. For a specific example, choose a Brieskorn homology 3-sphere which bounds
a contractible 4-manifold, e.g. (2, 3,13) (see [A-K4]) or ) _(p,ps—1,ps+1) for p even,
s odd (see [C-H] for other collections); note that n1(3(p,q,7)) is a discrete subgroup
of a compact, connected Lie group [Milnor4].

§4. Handle Slides.

According to Theorem 1.1 any two handle decompositions for M* are related by
isotopy of attaching maps and births and deaths. In the language of framed links, a
birth of a 1-2 handle pair or 2-3 pair is shown in Figure 4.1 by the sudden appearance,
away from the rest of the link, of the indicated links. A death (or cancellation) is their
disappearance.
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An isotopy of an attaching map becomes interesting when it goes “over” another
handle rather than just moving about in S = 8(0-handle). The reader should picture
an attaching circle which goes over the top of another 2-handle intersecting the critical
point (the north pole) of the second 2-handle. If the attaching map is perturbed “left”,
it falls down to one side of the second attaching circle, if “right”, then to the other side,
Figure 4.2.

7\ N 7 N
(_\ A
left

r1ght dim 2

Figure 4.2

Thus the process of sliding one 2-handle over another (of going from “left to right”),
is to take the band-connected sum of the first attaching map with a push-off of the
second attaching map, using the framing to determine the push-off (Figure 4.3).

The band-connected sum can be done along any band, which is allowed to have any
number of right or left half twists in it. The attaching circles should be oriented and
then the band-connected sum will either “add” or “subtract” the push-off from the first
circle.

The new framing can be computed from the linking matrix by the same process as
a change of basis; if a slides over 3, then the new basis should be a + 8 and 8 with
framing and linking as in Figure 4.4. In Figure 4.3, m = 0. The reader can verify this
by drawing f(S?! x 0) and f(S* X e;) for each handle, doing the band-connected sum,

and computing the new linkings.
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The same thing works if we “slide a 2-handle over a 1-handle”; we are thinking of the
1-handle as a dotted circle with a “framing” zero, and sliding a 2-handle over it (Figure
4.5) is the same as isotoping the attaching map of the 2-handle between the feet of the
1-handle (Figure 2.4). Note that the framing changes according to the change in the
linking matrix when a 1-handle is added to a 2-handle, which corresponds to crossing
the dotted line in Figure 2.4.

It is possible to make sense of sliding a 1-handle (dotted circle) over a 2-handle whose
attaching circle is a slice knot ([A-K3], pg. 376); the knotted, dotted circle means
remove the slice disk from B*. But we won’t pursue this notion, and from now on rule
out the possibility of sliding a 1-handle over a 2-handle.

At this point there are a number of elementary examples that should be understood.

LEMMA 4.1. An unknotted S* with framing +1 can always be moved away from the
rest of the link L with the effect of giving all arcs going through S! a full 1 twist and
changing the framings by adding F1 to each arc, assuming the arcs represent different
components of L (in general they change according to change of basis in the linking
matrix). See Figure 4.6.

PRrOOF: First do the case for one arc, k = 1, by sliding the arc once over the circle;
we add if the linking between the oriented arc and circle is F1 compared to +1, and
subtract otherwise. In general slide all arcs over the circle once. O

COROLLARY 4.2. S? x §? = CP?} — CP2.

PROOF: OCQ)I = O O O

-1 1
COROLLARY 4.3. (S2x S§?)§ CP? =CP?§ (—CP?) { CP2.

S A A A i
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Figure 4.6

LEMMA 4.4. ZRCQ)O z OCWC)O ZHCIQDO = ICQDO

ProoF: Each time the left circle is slid over the right (with the proper band-connected
sum), the framing changes by +2. O

LEMMA 4.5. If in L (with no 1-handles) a component L¢ is an unknot with framing
zero which links only one other component L, geometrically once, then Lo U L; may be
moved away from the rest of L without changing framings. Then L, can be unknotted



