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Preface

This book is a collection of lecture notes mainly from the short
courses given in the 2007 Shanghai Summer School on Nonlinear Con-
servation Laws, Fluid Systems and Related Topics at Fudan University,
July 5—August 4, 2007. There were more than 130 participants, including
graduate students, postdoctors and junior faculty members from more
than 30 universities in China and USA.

This summer school provided an occasion for a series of courses (25—
26 hours each) by four distinguished contributors of this volume, De-
nis Serre (ENS-Lyon, France), Xiaoming Wang (Florida State Univer-
sity, USA), Tong Yang (CUHK, Hong Kong), and Yuxi Zheng (Penn
State, USA), and a series of invited lectures by distinguished speak-
ers including Jerry Bona (UIC, USA), Honggiu Chen (The University
of Memphis, USA), Emmanuele DiBenedetto (Vanderbilt University,
USA), Willi Jager (University of Heidelberg, Germany), Fanghua Lin
(NYU, USA), Tai-Ping Liu (Stanford University, USA), Yuejun Peng
(Université Blaise Pascal, France), Weike Wang (Shanghai Jiao Tong
University, PRC), and Ping Zhang (Chinese Academy of Sciences, PRC),
besides the editors of this volume.

This volume comprises five chapters, ranging from the mathematical
theory and numerical approximation of both incompressible and com-
pressible fluid flows, kinetic theory and conservation laws, to statistical
theories for fluid systems, with expectation to lead the readers from the
basics to the frontiers of the current research in these areas.

Chapter 1 is an introduction to the theory of incompressible invis-
cid flows with emphasis on classical results and recent developments.
Chapter 2 is an introduction to one-dimensional hyperbolic systems of
conservation laws with emphasis on theory, numerical approximation,
and discrete shock profiles. Chapter 3 is an introduction to the kinetic
theory, conservation laws and their intrinsic connections. Chapter 4 is
an introduction to elementary statistical theories with applications to
various fluid systems. Chapter 5 is an introduction to the Euler equa-
tions for compressible fluids in two space dimensions with emphasis on
the self-similar isentropic irrotational case. These topics are naturally
interrelated and represent a cross-section of the most significant recent
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advances and current trends in nonlinear conservation laws, fluid systems
and related topics.

The editors would like to express their sincere thanks to all the au-
thors in this volume for their contributions and to all the participants
in the Summer School. Zhigiang Wang and Chunlian Zhou deserve our
special thanks for their prompt and effective assistance to make the
Summer School run smoothly. The editors are grateful to Fudan Uni-
versity, the Mathematical Center of Ministry of Education of China, the
National Natural Science Foundation of China (NSFC) and the Institut
Sino-Francais de Mathématiques Appliquées (ISFMA) for their help and
support. Finally, the editors wish to thank Tianfu Zhao (Senior Editor,
Higher Education Press) for his patience and professional assistance.

Gui-Qiang Chen, Ta-Tsien Li, Chun Liu

March 2008
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Introduction to the Theory of
Incompressible Inviscid Flows*

Thomas Y. Hou
Applied and Computational Mathematics, Caltech,
Pasadena, USA
E-mail: hou@acm.caltech.edu

Xinwei Yu
Department of Mathematics, UCLA,
Los Angeles, USA
E-mail: rinweiyu@math.ucla.edu

Abstract

In this chapter, we consider the 3D incompressible Euler equa-
tions. We present classical and recent results on the issue of global
existence/finite time singularity. We also introduce the theories
of lower dimensional model equations of the 3D Euler equations
and the vortex patch problem.

1 Introduction

The goal of these lecture notes is to introduce to the readers classical
results as well as recent developments in the theory of 3D incompressible
Euler equations. We will focus on the global existence/finite time singu-
larity issue. We will start with the basic properties of the incompressible
fluid flows, and then discuss the local and global well-posedness of the
incompressible Euler equations. Of particular interest is the global ex-
istence or possible finite time blow-up of the 3D incompressible Euler
equation. This is one of the most outstanding open problems in the past
century. Here, we carefully examine the nature of the nonlinear vor-
tex stretching term for the 3D Euler equation as well as several model
problems for the 3D Euler equation. We put extra effort in taking into
account the local geometrical properties and possible depletion of nonlin-
earity. By going through the nonlinear analysis of various fluid models,

*The first author is partly supported by an NSF grant DMS-0713670 and an FRG
grant DMS-0353838. The second author is partly supported by an NSF grant DMS-
0354488.



2 Thomas Y. Hou, Xinwei Yu

we can gain valuable insights into the fluid dynamic prolems being stud-
ied. Through the analysis, we can also learn how various functional
analysis and PDE techniques are being used for realistic applications,
and what are their strengths and limitations. We especially emphasize
the interplay between the physical and geometric properties of the fluid
flows and modern nonlinear PDE techniques. By going through these
analyses systematically, we can have a good understanding of the state
of the art of nonlinear PDE methods and their applications to fluid dy-
namics problems.
This chapter is organized as follows:

Introduction

Derivation and Exact Solutions

Local Well-posedness of the 3D Euler Equation

The BKM Blow-up Criterion

Recent Global Existence Results

Lower Dimensional Models for the 3D Euler Equation

Vortex Patch

N o e W e

2 Derivation and exact solutions

2.1 Derivation of the Euler equations

The equation that governs the evolution of inviscid and incompressible
flow is the Euler equation. Here we first derive the 3D Euler equation
briefly. For more detailed derivations, the readers should consult other
textbooks in fluid mechanics, such as Chorin-Marsden [12], Lamb [31],
Marchioro-Pulvirenti [36), or Lopes Filho-Nussenzveig Lopes-Zheng [33].

We consider a domain  which is filled with a fluid, such as water.
In classical continuum mechanics, the fluid can be seen as consisting of
infinitesimal particles. At each time ¢, each particle has a one-to-one
correspondence to the coordinates £ = (z1,z2,z3) € Q. The fluid can
be described by its density p, velocity u = (u;, u2,u3) and pressure p at
each such point € 2. Under the above assumptions, we can denote the
position of any particle at time ¢ by X («,t) which starts at the position
a € Q at t = 0. Its evolution is governed by the following differential
equation:

% = u(X(Of, t)at)a

X(,0) = a. (2.1)
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To study the dynamics of the fluid, we must establish relations between
p, u and p. We do this by considering two basic mechanical rules: the
conservation of mass, and the conservation of momentum.

The conservation of mass claims that, for any fixed region W C Q
which does not change with time,

%/w p(z,t) dz = —/aw o(z,t)u(z,t) - n(z,t) do (2.2)

for all time ¢, where n(z,t) is the outer unit normal vector to OW, and
do is the area unit on OW. Using the Gauss theorem we arrive at

d
7 /W p(z,t) de = — /WV -(p(z, t)u(z,t)) dz

which implies
/ (pt + V- (pu)) dz =0.

If we assume the continuity of the integrand p; + V - (pu), by the arbi-
trariness of W, we get
pt +V - (pu) =0. (2.3)

Since otherwise, there would be a point zy such that the integrand is
not 0. Without loss of generality, we assume (p; + V - (pu)) (zo) > 0.
Then by continuity, there is » > 0 such that p, + V - (pu) > 0 for any
z € B(zg,r). This leads to a contradiction by taking W = B(zo, 7).
Equation (2.3) is called the continuity equation.

Let J be the determinant of the Jacobian matrix, %—f. It can ben
proved by direct calculations (the reader should try to prove this as an
exercise, see also Chorin-Marsden [12]) that

dJ
S =(V-wy, JO=1

We assume that the flow is incompressible. Incompressibility implies
that the flow is volume preserving. Using the above equation one can
show that the velocity is divergence-free, i.e.

V-u=0. (2.4)

In this case, we have the determinant of the Jacobian matrix, J, to be
identically equal to one, i.e. J = 1. If the initial density is constant, i.e.
p(z,0) = po, equation (2.3) implies that density is constant globally, i.e.

p(ﬁ?, t) = po-
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Remark 2.1.

1. The above derivation of the mass conservation equation is under
the assumption that p, u and 8W are all smooth enough, e.g., C L

2. One can also derive (2.3) in a Lagrangian way, i.e., by considering
an evolving region €2, that is a collection of particles. See e.g.
Lopes Filho-Nussenzveig Lopes-Zheng [33].

3. Yet another way is through the variational formulation. See e.g.
Marchioro-Pulvirenti [36].

The conservation of momentum means

4 / pu dz = F(Q), (2.5)
dt o,

where F(Q;) is the force acting on Q;. Here @; = Usen, X (a,t) for
some §p C  is a collection of particles that is carried by the flow. We
first assume that the interaction in the fluid is local, i.e., all the forces
between points inside ; cancel each other by Newton’s third law. This

assumption implies
F(Qt) = / f do
%,

for some f. Qur second assumption is that the fluid is ideal, which
means that f = —pn, where n is the unit outer normal to 9Q;. Now the
momentum relation becomes

—d—/ pudz = —pn do = — Vp dz,
dt Jo, an, Q.

where the second equality follows from the Gauss theorem
/ 9;f de = fni do.
Q a0

To derive a pointwise equation similar to (2.3), we need to put the %
inside the integration in the term

d
— dz.
dt /Q pu o
Note that since Q; = X(Qo,t) depends on ¢, it is not the same as

(pu): dz.
Q
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Instead of naively putting the differentiation inside, we proceed as fol-
lows. We first change variables from the Eulerian variable z to the La-
grangian variable a. Since the flow is incompressible, the determinant
of the Jacobian matrix is equal to one, i.e., det(X,) = 1. Thus we have

d d
— = — d
@) ma=g I plX(@8) (X (1)) do
d d
= [ e nutno +p(X. ) Zu(X, ) do

=/ (pt +u-Vp)u+p(ug+u-Vu) do
Qo
=/ p(u; +u- Vu) do
Qo
:_/ p(u; +u- Vu) dz,
Q

where the first equality follows from the fact that the flow map a —
X (a, t) is one-to-one and has Jacobian 1, and the fourth equality follows
from (2.3) and the incompressibility condition. Now we have

/ plug+u-Vu)der=— [ Vpdz.
Q

Finally, by the arbitrariness of €2;, we get
p(u; +u-Vu) = —Vp. (2.6)

by an argument that is similar to the one leading to (2.3). (2.6) is the
balance of momentum.

If we further assume that the flow has constant initial density, then
we have p(z,t) = po, and equation (2.6) is equivalent to:

u; +u-Vu=-Vp,

where p is the “rescaled” pressure p/po.
Under these assumptions, we obatin the 3D Euler equation as follows:

u; +u-Vu=-Vp, (2.7)
V-u=0.

In the remaining part of this lecture note, we will focus on (2.7).
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2.2 The Vorticity-Stream function formulation
2.2.1 Vorticity

We consider the Taylor expansion of the velocity u(z,t) at some point
z.

u(z + h,t) = u(z, t) + Vu- b+ O(h?)
t _ t
—u(z,t) + V““;V“ bt T2 ZV“ h + O(h?)

= u(z, t) + S(z, t)h + Q(z, t)h + O(R?),

where S is symmetric and €} is anti-symmetric. In 3D, it is easy to see
that there is a vector w such that

Q(z, t)h = %w(x, £) x h.

This implies that locally, the flow is rotating around an axis £(z,t) =

- z:) . The vector field w(x,t) is called “vorticity”. And it is easy to

check that
w(z,t) =V x u(z, ).
2.2.2 Vorticity-Stream function formulation
By taking Vx on both sides of the 3D Euler equation (2.7), we have
wetu-Vo=w-Vu=5 w. (2.8)

which is the vorticity formulation. The last equality follows from the
fact that

1
Q-wzngwEO,

since by definition we have
1
§w xh=Q-h

for any vector h. Now there are two unknowns w and u, so we have to
find the relation between them to close the system. This relation is the
so-called Biot-Savart law:

u(z) = i /R ) ]—;_‘—;3 x w(y) dy. (2.9)

Note that we need u(z) to vanish at oo for the above formula to hold.
To derive the Biot-Savart law, first define a vector valued function ¥,
called “stream function”, such that

—AY =w.
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Now it is easy to check that

u=VxV¥
satisfies

Vxu=w.
(Hint: Use the identity

-V x (Vx)+V(V:)=A,
and then try to show
IV(V-9))}. =0

using the same identity. Details are left as exercises. Or see Bertozzi-
Majda [35]).
Now the Biot-Savart law (2.9) follows from the formula

1 1
U= y / mw(y) dy,

where %ﬁ is the fundamental solution for the Poisson equation
—Au=f

in 3D.
Besides (2.8), another important form of the vorticity evolution is
the “stretching formula”.

w(X(a,t),t) = Vo X(a, t)wo(a), (2.10)

where wo(a) = w(X(,0),0) = w(a,0), and X is defined by (2.1). To
prove it, just differentiate both sides with respect to time, which yields

wt +u-Vw = Vau(X(a,t), t)wo(a)
= Vu- (VQX . wo)
= Vu-w(z,t),

which is just (2.8). One catch: this “proof” actually uses the uniqueness
of the solution to the system (2.8), (2.9).

For the convenience of future references, we will denote the differ-
entiation in time along the Lagrangian trajectory as —.%, which has the
property:

D
ﬁwzwt-ku-v'w.

% is also called material derivative.



8 Thomas Y. Hou, Xinwei Yu
2.2.3 2D Euler equations

In some physical cases, such as the flow passing around a cylinder with
infinite length, we can assume that uz = 0 and u,p depend on z;, T2
only. In this case, the Euler equations (2.7) remains the same form, but
the vorticity-stream function form reduces to

wi+u-Vw=0 (2.11)
and
_\4
u(z) = o il’;—_%)l—z-w(y) dy, (2.12)

where w is a short-hand for ws.

One important difference between 2D and 3D Euler equations is that,
the right hand side is 0 in (2.11), which means the vorticity is conserved
along Lagrangian trajectory pathes. This point can be illustrated more
clearly by looking at the “stretching formula” in 2D, which is

w(X(a,t),t) = wola). (2.13)
This difference plays an important role in the theory of 2D Euler

equations, which is far more complete than its 3D counterpart.

2.3 Conserved quantities
2.3.1 Local conserved quantities

First we consider those quantities that are carried by a collection of flow
particles.

Let Cs be a closed curve in R3. We define
Cy = UaGCoX(av t)
and the circulation
Te, = f u-ds.
Ce
Theorem 2.2 (Kelvin’s Circulation Theorem). I'c, = 'c,.

Proof. We first prove the following.

4 Du ..
dt Jo, c, Dt



Introduction to the Theory of Incompressible Inviscid Flows 9

To prove it, let a(8) be a parametrization of the loop Cp, with0 < 8 < 1.
Then C; is parametrized as X (a(8),t). Thus

4
dt Jo,

1
wds= 9 /0 (X (a(B),£),1) - a%X(a(ﬁ),t) dp

1 Du d
=/ D¢ X(@(B),1),1) - a—ﬂX(a(ﬂ),t) dap

1 b}
+ /0 u(X(a(B).1),t) - gru(X(@(B).8).t) dB,

where we have used the relation
2% (at) = u(X (e, 1),1)

Note that the first term is just

we just need to show that the second term is 0. This is easy, since we

have ) 5 -
1
/0 u-%uds—ifo %(uwx) ds =0,

which follows from the fact that C; is a close loop.
Now we prove the circulation theorem. We have

d Du
— u-ds = —ds=— Vp-ds=—/pds=0
dt Je, c, Dt c, c,
since C} is closed. This ends the proof. O

Next let Cy be a general curve and C; = X(Cy,t). Then as long as
the flow is still regular, C; is still a curve in R3. C; is called a vortex
line if the following is satisfied

Cy is tangent to wg(a) at any a € Cp. (2.14)

One can verify that as long as (2.14) is satisfied, the same tangency
condition is satisfied at every moment ¢, i.e.,

C; is tangent to w(z,t) at any z € C;.

A collection of vortex lines is called a “vortex tube”. One readily
sees that vorticity is always tangent to the side surface of a vortex tube.

The above properties make vortex tube/line very important objects
in the theories/numerical simulations/physical experiments of the 3D
Euler equation, as we will reveal later in this lecture note.



10 Thomas Y. Hou, Xinwei Yu

2.3.2 Global conserved quantities

The most well-known global conserved quantities are the following
(we will indicate the dimension and region/manifold, T< stands for d-
dimensional periodic torus):

1. The integral of velocity (R and T¢ , d = 2,3).

d
E/udz—o.

2. Kinetic energy (R9, T¢, smooth bounded domain, d = 2, 3).

d 2
E/‘“‘ dz = 0.

Remark 2.3. In the R? case, caution must be taken. We actually need
that the kinetic energy [ |u|2 dz to be finite. In 3D this requirement is
reasonable, while in 2D it is not.

3. Center of vorticity (R? , if uw decays fast enough at co).
z :/ Tw dx = const.
R2

4. Moment of inertia (R? , if uw decays fast enough at co).

I= / |z w dz = const.

B2
5. Functions of vorticity (d = 2).
[ 1@ de= [ fwo) do
Q. [o%

for any measurable f and material domain ;. In particular, we
see that the L? norm of w is conserved for 1 < p € oo.

f T X w dz,
R3

/ z X (z X w) dz;
R3

/ u-w dz;
]RS

w-,

6. Other quantities.

helicity

and spirality
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where v = u + V¢ with ¢ solving
D
Dt
This quantity is conserved along particle trajectories.

=—luf*/2+p.

2.4 Special flows
2.4.1 Axisymmetric flow

In this subsection we introduce the axisymmetric flow, i.e., when written
in cylindrical coordinates z; = rcosf, zo = rsinf and z3 = 2, the
velocity u and the pressure p depend only on 7 and 2. Unlike the 2D
Euler equations, this particular flow retains some 3D characters and is
often referred to as the 2%-D equations.
We introduce the cylindrical frame of reference:
e = (cos@,siné,0),
eg = (—sinb,cosb,0),
€z = (0’ 07 1)1
and can easily rewrite the 3D Euler equations in the new frame, with
u = u(r, 2) and p = p(r, 2), as
u, + (u-V)u+ B = —Vp, (2.15)
where _
VvV = (6,,0,0,)
and
'U;g ']
B= 7(—11. ,u",0).
We leave the details (which can be found in e.g. Lopes Filho-Nussenzveig
Lopes-Zheng [33]) for this system to the reader as exercises.

1. Derive equations (2.15).

2. Prove that, in the moving frame (e,, eg, €,), we have
w=w"e, +wleg + we,
0 u®
= (-8,u ) er + (8:u" — Oru”) eg + (6ru9 + T) e,.

3. When u? = 0, (2.15) becomes axisymmetric flows without swirl.
Prove that the equations are

(6t+u-§) u=—Vp,
V- (ru) =0. (2.16)



