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Abstract Results of investigations on novel formulations, structure-property relation-
ships, curing, and compositions with fillers and reinforcing fibers (1997-2004) are re-
viewed with about 200 references to articles and several references to patents. The
following topics are considered in particular: novel dibasic acids, glycols, crosslinking
monomers, and curing systems, “vinyl ester” resins, fire retardant materials, IPNs and
other systems comprising built-in thermoplastic polymers and oligomers with terminal
functional groups. Information on unsaturated polyesters manufactured using PET scrap
is given. Analytical (mainly spectrometric) methods for studying the chemical structure
of crosslinked unsaturated polyester resins are presented. Approaches to the decrease in
styrene emission on processing of unsaturated polyester resins are also discussed.

Keywords Unsaturated polyester resins - Reinforced polyesters -
Poly(ethylene terephthalate) - Vinyl ester resins - Curing
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1
Introduction

Unsaturated polyester resins (UPRs) have been known for many years. The
production of UPRs started in the 1930s. Recently, their manufacture has
reached a peak level. UPRs are, along with polyurethanes, the most import-
ant crosslinkable polymeric materials. The importance of UPRs is due to their
important fields of application, mainly in glass fiber reinforced plastics. The
rapid increase in the share of UPRs in the plastics market, comprising also
highly filled materials, coatings, and cast objects etc., is due to their simple
processing.

The chemistry of UPRs involves the synthesis of unsaturated polyesters
(UPs) by polyesterification or step-by step ionic copolymerization. The thus
synthesized UP is then dissolved in an unsaturated monomer and crosslinked
applying the radical polymerization approach. Thus, the chemistry of UPRs
involves the polycondensation or ionic polymerization methods and crosslink-
ing by peroxide or photochemically initiated radical polymerization.

Thanks to the various types of chemical reactions being applied in the
manufacture and processing of UPRs and to the versatility of industrial appli-
cations, the progress of research and development in UPRs is very fast. The
industrial progress in UPRs is accompanied by intense research, design and
processing activities making the UPR industry an important component of
polymeric materials science and technology.

2
Major Raw Materials

A classification of methods for the synthesis of unsaturated polyesters on the
basis of conceptions of condensation and polycondensation as well as add-
ition and polyaddition has been proposed [1]. The presented methods were
characterized taking into account a regularity of the distribution of unsatu-
rated bonds and the appearance of side reactions. A model to estimate the
average number of chain branches and of chain ends of UP prepolymers has
also been proposed [2]. Fundamental molecular parameters, i.e. hydroxyl and
carboxyl values, Ordelt saturation (reaction of hydroxyl groups with dou-
ble bonds) extent, mass polydispersity index, short- and long-chain branch
distribution, and composition of starting reactants were included in the pro-
posed model. The real molar mass, especially the molecular mass of the linear
backbone chain, as well as the carboxyl and hydroxyl functionalities of UP
prepolymers [3] could be estimated using the described model. The obtained
results should be very useful for developing UP sheet-molding compounds
(SMC) thickening technology.
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2.1
Dicarboxylic Acids and Acid Anhydrides

The introduction of dicarboxylic acids or acid anhydrides with cycloalkene
configuration into the polyester chain results in an increase in impact
strength, chemical resistance and resistance against UV light as well as
a decrease in refractive index and surface tackiness. UP resins were pre-
pared (Scheme 1) from cis-4-cyclohexene dicarboxylic anhydride (tetrahy-
drophthalic anhydride), diethylene glycol, propylene glycol and 2,2-di(4-
hydropropoxyphenyl)propane [4]. An improvement of mechanical proper-
ties, shortening of drying time of the casting surface, lowering of refractive
index, more than twofold decrease in water absorption as well as a consider-
able increase in the Martens temperature of cured UPRs were observed when
phthalic anhydride was replaced with tetrahydrophthalic anhydride. Next,
partial substitution of maleic anhydride (Table 1) with an eutectic mixture of
anhydrides of cyclic non-aromatic dicarboxylic acids (hexahydrophthalic an-
hydrides and three isomeric tetrahydrophthalic anhydrides) was studied [5].
Crosslinked UPRs prepared from the mixture of acid anhydrides were char-
acterized by improved mechanical properties (Table 2) and considerable
resistance to sunlight, particularly in regard to the impact strength and heat
resistance. Epoxyfumarates formed by the addition of acrylic or methacrylic
acid or acid esters of maleic or fumaric acid to epoxy resins (Scheme 2) are an
important group of chemically resistant resins, sharing advantages of UPRs
and epoxy resins [6]. The synthesis consists of the following stages:

e addition of an alcohol to maleic anhydride to form an alkyl hydrogen
maleate/fumarate;

e addition of the thus obtained acid maleate (hydrogen maleate) to the li-
quid epoxy resin;

e catalytic cis-trans isomerization of the thus obtained addition product
(the maleate) to form the corresponding fumarate;

e dissolution in styrene of the thus obtained fumarate followed by peroxide-
initiated radical copolymerization (crosslinking).

CH3 CH3 CHg

CH=CH
CHp CHy : C : C Ohg CH, C G C GHs
H1OOCCH-CH-COO—-CH,—CH-0 (; O-CH-CH;-O0OCCH=CHCOO—CH,—-CH-0O (I) O-CH-CH, OH
CHj CH3 %
Scheme 1
9 2 CHs 9 o
R-0-C-CH=CH-C-0-CH,~CH-CH,~0 c 0-CHp—CH-CH,—0-C-CH=CH-C-0-R

OH CHs, OH

Scheme 2
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(0]
// A\
R-OH + CH=CH —= R-0-G  C-OH
0=C_ C=0 C=C
o H H
Scheme 3
o O CHs o O
/) \
r-0-¢~ \c—ovCHfCH—CHz—oOéOO—CHz—CH—CHz—o—C// “t-0-r
AN e i 1 1 Non
_c=C( OH CHa OH C=C{
H H H H
Scheme 4
g
R-0-C H
Cc=¢C CHg ol
H /C-O-CHZ—QH—CHg—OOQOO—CHQ—QH—CHQ—O—C\ H
d OH CHg OH Cc=C
H C-O0-R
o
Scheme 5

Table 1 Composition of the studied UPRs. Reprinted from (1995) Polimery 40:669 [5] with
permission

Components [mol]

Resin Mixture of Maleic Diethylene Propylene Glycerol  Xylene
anhydrides anhydride glycol glycol

1 1 1 2.1 - - 0.072
1 1 = 2.1 = 5

3 1 1 = 2.0 0.07 -

Table2 Properties of cured UPRs prepared from a mixture of acid anhydrides (accord-
ing to Table 1) and commercial reference resin. Reprinted from (1995) Polimery 40:669 [5]
with permission

Resin
1 2 3 Polimal 103

Flexural strength [MPa] 67 69 72 60
Compression strength [MPa] 190 82 102 102

Static stress at break [MPa] 32 35 26 20

Impact strength [kJ/m?] 9.6 3.4 4.0 2.3

Heat deformation temperature 58 75 76 55
(Martens) [°C]

Water absorption [%] 0.34 0.2 0.1 0.3

Hardness [MPa] 85 147 160 103
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Similar to the vinyl ester resins, the cured epoxyfumarate resins are dis-
tinguished by enhanced chemical resistance (e.g. in aqueous 20% NaOH at
60 °C), heat deflection temperature and flexibility. The chemical composi-
tion of the R group (methyl, ethyl, n-butyl, benzyl, cyclohexyl) influences
the properties of the crosslinked epoxyfumarate resins [6]. If the R group
contains bromine (e.g. tribromoneopentyl or 2,3-dibromopropyl), the cured
resins are fire retardant [7]. Moreover, the brominated resins are distin-
guished by increased Martens heat deformation temperature and low water
absorption.

To further increase the crosslinking density and thus the Martens heat
deformation temperature, an allyl group was built into the molecule of epoxy-
fumarate resin (Scheme 6) [8]. A Martens heat deformation temperature ex-
ceeding 100 °C could be reached.

two-step synthesis

C,p CH g OR'

CH-C . -C-

cu-c° * A CH-C-OH
O 1"

1
CH-C-OR'
Clig—/CH—CHg—O—R‘[O—CHZ—QH—CHz—O—R}O-CHg—CH-/CHg + (IJ'H—Q-OH
(e}

o OH n=0-1 o

l catalyst temp. 170°C

H _ COOCH,~CH—CH,~0-R10-CH,~CH-CH,~O-R+0-CH,—CH-CH,00C H
C=C OH OH n0-1 OH c=c
C

ROOC H H  COOR'

‘ catalyst temp. 170°C

one-step synthesis

0
CH-C ;
CHp~CH—CH,—0-R10-CHp~CH-CHp,—O-R+O-CH,—CH-CH, + &1 . >O + ROH
N/ OH / CH-C
n=0-1 0 (¢]

CHs
where: R = —OOQ—@o— and R'= —<:>
CHs
)

—CHz~(CHg)s~CHs

Fig.1 One- and two-step syntheses of the studied epoxyfumarate resins. Reprinted from
(2000) J Appl Polym Sci 77:3077 [11] with permission



