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PREFACE

The present book is the outcome of the lectures delivered by
the author to the teachers in the Summer Institute, at all India
level, held in Jaipur and to the graduate students and research
scholars of the University of Jodhpur. The lectures have been
received with considerable enthusiasm and his students’insisted to
get the lecture notes published. It is because of students encour-
agement that the author ventures to publish them. These lectures
have been revised and rewritten so as to present them in the form
of a book. Mainly, the theory of laminar flow of a viscous incom-

. pressible. fluid, which has reached to such a stage of perfection
that a good portion of it can be taken up as a first course in the
subject, has been presented here.

In the first chapter the basic concepts required in the deve-
lopment of the theory of viscous flow have been discussed and the

: constitutive equation for an isotropic Newtonian fluid is derived
in Cartesian tensors. Chapter 2 deals with the fundamental
equations, which govern the motion of a viscous compressible

. fluid. The derivation of the equations has been made simple
and concise with the help of cartesian tensors. The governing

_equations, for compressible and incompressible fluids motion, in
cartesian, cylindrical and spherical polar coordinates are given
in tabular form for ready reference.

‘ In chapter 3 the topics like Dynamical similarity and Dimen-
sional analysis have been discussed and the physical importance
of the non-dimensional parameters and coefficients, which play

" an important role in the study of the flow of viscous fluids, is
given. :

Since the Navier-Stokes’ (N-S) equations of motion are non-
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linear in character, there is no known general method to slove
' these'equations.  Only in few special cases exact solutions can be
\gbtained by making certain assumptions about the state of the
fluid and"a simple configuration for the flow pattern. Some of
these exact solutions have been:given in Chapter 4.
The exact solutions of the N-S equationsdiscussed in Chapter
4 are valid for all ranges of viscosity but are few in number.
However, there appear, at present, .no such exact solution of
the flow past bodies of finite size and, therefore, in order to study
such flows the N-§ equations have been simplified to mathemati-
cally tractable forms for two extreme cases (i) when viscosity is
very large, which give rise to the theory of very slow motion
developed by Stokes and Oseen and discussed in Chapter 5, and
(ii) when viscosity is very small leading to the theory of Prandtl’s
laminar boundary layers treated in Chapter 6. In this book
only the exact solutions of the two-demensional and axially-sym-
metrical steady incompressible boundary layers are discussed.

Chapter 7 deals with the integral methods for the approxi-
mate solution of the two-dimensional boundary layers based on
Ka’rma’n momentum-integral equation. The energy integral
equation has also been derived in order to show its connection
with the simplified ' method of Walz and Thwaites.

The last Chapter, i.e. Chapter 8,is on thermal boundary
layers where the ‘exact solutions of both forced and free convec-
tion are discussed. Much emphasis is given on the Pohlhausen’s
problem of forced convection in boundary:layer on a flat plate as
it is of fundamental importance even in the study of compressible
boundary layers. Analogous to the Ka'rma'n momentum-integral
equation, the thermal energy integral equation is also derived
and has been applied to the Pohlhausen’s problems of both forced
and free convection to obtain the respective approximate solu-
tions. ;

It is hoped that the present book will serve as a text-book on
the theory of viscous incompressible laminar flow to the students
of various Universities and technological Institutes, who offer the
subject as a special paper in their higher studies and an introduc-
tory book on laminar incompressible boundary layers to young
research workers who may be new to the subject. The author is
highly indebted to the.authors of various reference books on the
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subject which he has consulted in the preparatiox‘ of*his lecture :
notes and trusts that the bibliography given at the:‘cndr,wg%,serge
as a partial acknowledgement of this debt. \ B WA

The author would like to express his sincere%;,/
Prof. P. L. Bhatnagar, Prof. J. N. Kapur, Dr. P. D. Verma
and Dr. M, C. Gupta, with whom he had very useful discus-
sions. His special thanks are due to Prof. R.S. Kushwaha,
University of Jodhpur and Prof. G. C. Patni, University
of Rajasthan, Jaipur who took pains to introduce a paper on
the study of viscous flow at the graduate level in their respec-

tive Universities., It is his great fortune that he got an
opportunity to study in the Prandtl Institute (AVA and,
Max-Planck Institut fur Stromungs forschung) at Gottingen
under the able guidance of Prof. H. Schlichting and Prof. W,
Wuest, whose works have always been a source of great inspira-
tion to him and to them he owes much more than what he can
express.

In conclusion, he is thankful to his students Dr. N. C. Jain
and Mr. 8. S. Tak, who have assisted in going through a part of
the manuscript and.to his wife Gaytree Bansal for her constant
encouragement and full support during the preparation of the
manuscript. Thanks are also due to Oxford and IBH for their
excellent cooperation in producing this book.

University of Jodhpur
Jodhpur. The Author

October, 1977



Preface

CONTENTS

CuAPTER ]| Basic CONCEPTS

1o
1.2.
13,
134
125e
1.6.
L
1.8.
1.9.
1.10,
111,
10420

113,
1.14.

Fluid

Continuum hypo'thesis
Viscosity

Most general motion of a fluid element

Rate of strain quadric

Stress at a point

Symmetry of stress matrix

Tensor character of stress matrix

Stress quadric

Stress in a fluid at rest

Stress in a fluid in motion

Relation between stress and rate of strain
components (Stokes’ law of friction)

Thermal conductivity
Generalized law of heat conduction

CHAPTER 2 FUNDAMENTAL EQUATIONS OF THE FLOW OF

24,
26

2.8.

2.4,

2.5.
2.6,

VISCOUS FLUIDS
Introduction

Equation of state

Equation of continuity-Conservation

of mass
Equations of motion (Navier-Stokes” equations
—Conservation of momentum
Equation of energy-Conservation of energy ...
Summary of the fundamental equations

vii

17
2
%2

24
24
24

25

27
29
32



xii

CHAPTER 3 DYNAMICAL SIMILARITY AND INSPEGTION AND

2.7.. Vorticity and circulation in a viscous
incompressible fluid motion
(a) Vorticity transport equation
(b) Circulation

2.8. Tables of the fundamental equations

DIMENSIONAL ANALYSIS

3.1. Introduction

3.2, Dynamical similarity (Reynolds’ law)

3.3. Inspection analysis -

3.4. Dimensional analysis

3.5. Buckingham =-theorem

3.6. Method of finding out the #-products

3.7. Application of #-theorem to viscous
compressible fluid motion

3.8. Physical importance of non-dimensional
parameters '

3.9. Important non-dimensional coefficients in
the dynamics of viscous fluids

35
33
36
37

47
47
48
48
50
51
54

54
55

61

CHAPTER 4 EXACT SOLUTIONS OF THE NAVIER-STOKES’ EQUATIONS

4.1, Introduction

(A) Steady incompressible flow with constant

Jluid properties
4.2. Flow between parallel plates
(velocity distribution)
4.3. Flow between parallel plates
(temperature distribution)

4.4. Flow in a circular pipe (Hagen-Poxsemlle ﬂow)

(a) velocity distribution
(b) temperature distribution
4.5. Flow in tubes of uniform cross-section
(i) circular cross-section
(ii) annular cross-section
(iii) elliptic cross-section
(iv) equilateral triangular
cross-section
(v) rectangular cross-section
4.6. Flow between two concentric rotatmg
“cylinders (Couette flow)

64

64

- 65

69

74
76
79
80
81
81
82

83

-84



xiii

(@) velocity distribution 84
(b) temperature distribution S 86
4.7. Flow in convergent and divergent channels
(Jeffery-Hamel flow) 87
4.8. Stagnation point flows 93
(a) Stagnation in two-dimensional flow
(Hiemenz flow) E e 93
(b) rotationally symmetrical flow with
stagnation point (Homann flow) 96
4.9. Flow due to a rotating disc (Ka'rm'an flow) ... 97
(B) Steady incompressible flow with
variable viscosity 101,
4.10. Variable viscosity plane Couette flow 102
4.11. Variable viscosity plane Poiseuille flow 106
(C) Unsteady incompressible flow with
constant fluid properties oo 109
4.12. Flow due to a plane wall suddenly
set in motion 109
4.13 Flow due to an oscillating plane wall 113
4.14. Starting flow in a plane Couette motion 114
4.15. Starting flow in a pipe 116
(D) Steady compressible flow 118
4.16. Plane Couette flow of a viscous compresible
fluid 119
(E) Steady incompressible flow with fluid
suction|injection on the boundaries 123
4.17. Plane Couette flow with transpiration
cooling 123
CHAPTER 5 THEORY OF VERY SLOW MOTION
5.1. Introduction 127
5.2. Stokes’ equations ST 28
5.3. Flow past a sphere (Stokes-flow) 128
5.4. Oseen’ equations oes 138
5.5. Flow past a sphere (Oseen flow) 139
5.6. Lubrication theory el 144
CHAPTER 6 THEORY OF LAMINAR BOUNDARY LAYERS
6.1. Introduction 148

6.2. Two-dimensional boundary layer equations
for flow over a plane wall 149



6.3

6.4.

6.5.

6.6.
6.7.

6.8.

6.9.

6.10.
6.11.

6:12.

6.13.
6.14.

6.15.

6.16.
CHAPTER 7 INTEGRAL METHODS FOR THE APPROXIMATE

Tl
7.2,
733,
T

(a) order of magnitude approach

(b) asymptotic approach

The boundary layer on a flat plate
(Blasius-Topfer solution)

‘Similar solutions’-of the boundary

layer equations

Boundary layer flow past a wedge
Boundary layer flow along the wall of

a convergent channel

Two-dimensional boundary layer equations
for flow over a curved surface

Separation of boundary layer

() physical approach

(b) analytical approach

Boundary layer on a symmetrically placed
cylinder (Blasius series solution)

"
Gortler new series method

The spread of a jet

(@) plane free jet (two-dimensional jet)
(b) circular jet (axially symmetrical jet)
(c) plane wall jet

Flow in th: wake of a body

(asymptotic solution)

Prandtl-Mises transformation
Application of the Prandtl-Mises
transformation (the two-dimensional jet)
Boundary layer equations for flow past a
body of revolution (axially symmetrical
boundary layers)

Mangler’s transformation

SOLUTION OF LAMINAR BOUNDARY LAYER
EQUATIONS
Introduction
Ka'rma’n momentum integral equation
Ka'rma’n-Pohlhausen method
Application of the Ka'rma'n-Pohlhausen
method
(?) boundary layer over a flat plate

149
151
153

162
167

174

147
179
179
180

183
188
190
190
194
197

202
206

209

212
215

218
218
223

228
228



y itk
7.6.
vy

7.8.

(17) two-dimensional stagnation point flow
Walz-Thwaites method

Energy-integral equation

Walz-Thwaites method based on energy.
integral equation

Application of Walz-Thwaites method

XV

228
230
231

232
234

CHAPTER 8 THERMAL BOUNDARY LAYERS IN TWO-DIMENSIONAL

8.1.
8.2,

8.3;

8.4.

85,

8.6.
8.7.

8.8.

FLOW
Introduction
Two-dimensional thermal boundary layer
equation for flow over a plane wall
Forced convection in a laminar boundary
layer on a flat plate
Temperature distribution in the spread
of a jet
(@) plane free jet
(b) circular jet
(¢) plane wall jet
Free convection from a heated vertical
plate
Thermal-energy integral equation
Approximate solution of the Pohlhausen’s
problem of forced convection in a laminar
boundary layer on a flat plate
Approximate solution of the Pohlhausen’s
problem of free convection from a heated
vertical plate

Selected problems
Bibliography

Appendix

Index
Errata

235
235
239

252
252
255
256

261
264

265

272
275
292
295
303
307



CHAPTER 1

BASIC CONCEPTS

1.1 Fluid ;
All materials exihibit deformation under the action of forces.
If the deformation in the material increases continually without
_ limit under the action of shearing forces, however small, the mat-
erial is called a “fluid”. This continuous deformation under the
action of forces is manifested in the tendency of fluids to flow.

Fluids are usually classified as liquids or gases. A liquid has
interamolecular forces which hold it together so that it possesses
volume but no definite shape. When it is poured into a container
will fill the container upto the volume of the liquid regardless
of the shape of the container. Liquids have but slight compress-
ibility.* For most purposes it is, however, sufficient to regard
liquids as ““incompressible fluids.”” A gas, on the other hand,
consists of molecules in motion which collide with each other
tending to disperse it so that a gas has no set volume or shape.
The interamolecular forces are extremely small in gases. A gas
will fill any container into which it is placed and is therefore
known as a (highly) “‘compressible fluid”.

It is proper to remark here that for speeds which are not
comparable with that of sound i.e. if the Mach number (the
ratio of the velocity of flow to the velocity of sound) is small
compared with unity the effect of compressibility on atmospheric
air can be neglected and it may be considered to be a liquid, and

*The ability for changes in volume of a mass of fluid is known as
“‘compressibility”

1 (45-251/1976)



2 VISCOUS FLUID DYNAMICS

in this sense it is called incompressible air. Taking the velocity
of sound about 330 m/sec a flow velocity of 99 m/sec may be
accepted as the upper limit when a gaseous flow can be consi-
dered incompressible.

1.2 Continuum hypothesis

In its most fundamental form, at the microscopic level, the
description of the motion of a fluid involves a study of the behavior
of all the discrete molecules which make up the fluid. However,
when one is dealing with problems in which some characteristic
length in the flow is very large compared with molecular distances,
it is convenient to think of a lump of fluid sufficiently small from
macroscopic point of view but large enough at the microscopic
level so as to contain a large number of molecules (for instance,
at normal temperature and pressure a volume of 10~'%cc of a
gas contains about 2.7 x 10’ molecules) and to work with the
average statistical properties of such large number of molecules.
In such a case the detailed molecular structure is washed out
completely and is replaced by a continuous model of matter hav-
ing appropriate continuum properties so defined as to ensure that
on the macroscopic scale the behavior of the model resembles
with the behavior of the real fluid. When the characteristic
length in the flow is not large compared with molecular distances,
the continuum model is invalid and the flow must be analyzed on
the molecular scale.

The smallest lump of fluid material having sufficiently large
number of molecules to allow statistically of a continuum inter-
pretation is here called a ““fluid particle”.

The material in this book will deal primarily with fluids
obeying continuum hypothesis.

1.3 Viscesity

Viscosity of a fluid is that eharacteristic of real fluids. which
exhibits a certain resistance to alterations of form. Viscosity is
also known as internal friction. All known fluids (gases or
liquids) possess the property of viscosity in varying degrees.
The nature of viscosity can be best illustrated with the aid of the
following experiment of Newton :

Consider the motion of a fluid between two very long
parallel plates at a distance, say, ‘d’ apart, one of which is at
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rest and the other moving with a constant velocity U parallel to
itself, as shown in Fig. 1.1. Because of viscosity, the fluid will
also be in motion. Experiment teaches us that the fluid adheres
to both walls* (no slip condition), so that its velocity at the lower
plate, which is stationary, is zero and at the upper plate,
which is moving, is equal to the f Fis
Vclocity of the platc U. Expcri- PPN % cepec ban e el e
ments have shown that for a ,
large class of fluids the tangential ! i
stress 7 acting on either of the T
plates is proportional to the rela-
tive velocity between the plates i TR
and inversely proportional to the . g. 1.1. Fluid motion between a

distance d. Thus we have stationary plate and a mo-
ving parallel plate.

tecd

=p
d’ (L.1)
where 4 is a constant of proportionality, it is independent of U
and d and depends only on the nature of the fluid. This constant
is a measure of the viscosity of the fluid and is called the “coeffi-
cient of shear viscosity” or simply the “coefficient of viscosity’”.
For ordinary fluids, since there is no slip on the walls and
the fluid is displaced in such a manner that the various layers of
fluid slide uniformly over one another, the velocity % of a layer
of the fluid at a distance y from the lower plate is then

Al (1.2)

It may be seen from (1.2) that U/d in (1.1) may be replaced
by the velocity gradient du/dy, hence

T= yg—z (Newton’s law of viscosity) (1.3)

Equation (1.3) may be regarded as the definition of viscosity.

Thus the coefficient of viscosity of a fluid may be defined as
the tangential force required per unit area to maintain a unit
velocity gradient, i.e., to maintain unit relative velocity between
two layers unit distance apart.

* For a detailed study we refer to “Note on the conditions at the surface of
contact of a fluid with a solid body” in the book ‘“Modern developments
in fluid dynamics” pp. 676-680 By 8. Goldstein.,
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The dimensions of the coefficient of viscosity z# can be found
as follows :
shearing stress force/area = ML~1T-1
velocity gradlent velocity/length
As we shall see later, the effect of viscosity on the motion of
a fluid is determined by the ratio of u to the density p rather
than by u alone. This ratio is known as the ‘kinematic viscosity’’
and is usually denoted by v, thus
-17-1
7 ) 2
Some typical values of p and v are given below in c.g.s.
units for gases and liquids at 15°C and under atmospheric
pressure.

n=

u j v

Gases
Air 0.00018 0.15
Nitrogen 0.00017 0.15
Oxygen 0.0002 0.15
Hydrogen 0.00009 1.5
Helium 0.0002 0.12
Carbon dioxide 0.00014 0.077

Liquids

~ Water 0.0114 0.0114
Mercury 0.016 0.0012
Paraffin oil 0.2 0.25
Glycerine 13 10
Castor oil 15 15
Pitch 10 1010

For liquids the viscosity x is nearly independent of pressure and
decreases rapidly with increasing temperature. In the case of
gases, to a first approximation, the viscosity can be taken to be
independent of pressure but it increases with temperature. It is
small for “thin’* fluids, such as water or air, but large in the case
of very viscous liquids, such as oil or glycerine.

It is appropriate to remark here that the example considered
in Fig. 1.1 constitutes a particularly simple case of fluid motion.
The generalization to the case of three-dimensional flow is con-
tained in “Stokes’ law of friction”, the theory of which will now
be developed.
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STRAIN ANALYSIS

1.4 Most general motion of a fluid element

In general, the motion of a fluid element consists of three
parts (i) a translation, (ii) a rotation, and (iii) a deformation.
We shall show this by considering the relative motion between
two neighbouring points of a fluid element. Let P and Q denote
any two such points, at a time

—_ =P,
t, and letr and r-dr be their
position vectors referred to a

fixed point O (Fig. 1.2). If

- —
V (r,t) is the velocity at the

point P at a time ¢, the velocity
at @ at the same instant is ex-
pressed to a first order by

Fig. 1.2. Relative motion between
two neighbouring points of -

e s b il a fluid element.
V(r4-drt)=V(r,t1) +dV
' —— -
) =V(r,t)+(dr. grad)V (1.9
It is clear from above that in the velocity of the point @,

—-> —
there is a-part viz., V (r, r) which is the same as that of P. This
part is the same for all points of the fluid element and, therefore,
corresponds to a velocity of translation of the fluid elementasa -
whole.
— — —

The component dV or (dr. grad) V is the relative velocity
between P and @, can be shown to be made up of a rotation and
a deformation. We will carry out the proof in cartesian tensors,

— —
Let us denote the cartesian components of 7,dr and V by z;,
dx; and o; (¢=1, 2, 3) respectively. The jth component of

— —
(dr. grad) V is then given by

9y _ . | 1[0y dv; ov; _ av,)
R “”"'[ 3 (ax’.- ax, +3 <3x. o%;
(1.5)

Let 1 (o a_)
S (a? T 5, (1.6)




