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PREFACE

This book is concerned with the structure of group algebras of
finite groups over fields of characteristic p dividing the order of the
group, or closely related rings such as rings of algebraic integers and in
particular their p-adic completions, as well as modules, and homomorphisms
between them, of such group algebras.

Our principal aim has been to present some of the more recent
ideas which have enriched and improved this beautiful theory that owes so
much to Richard Brauer. In other words, we wish to account for a major
part of what could be described as the post-Brauer period. The reader will
find that once we get started, the majority of our proofs have not appeared
before in any textbooks, and as far as Chapters II and III are concerned,

a number of results and proofs which have not appeared before at all are
included.

We do not at any stage restrict ourselves to particular
methods, be they ring theoretic, character theoretic, etc. In each case
we have attempted to present a proof or an approach which distinguishes
itself in ome way or amother perhaps by being fast, elegant, illuminating,
or with promising potentials for further advancement, or possibly all of
this at the same time. (We are well aware of the fact that the reader may
not always agree this has been achieved (unless of course he or she
recognizes his or her own proofl!)) One point though that has been
important to us is to demonstrate the strong connection to cohomology
which undoubtedly will be strengthened in the years to come. Another point
to make is that we have tried very hard to avoid assumptions on the
coefficient rings involved in the ambitious hope to attract nonm-specialists,
perhaps even algebraic topologists and group theorists who may feel tempted
to use the tools of modular representations more frequently.

0f course, to make the presentation as smooth, coherent and

self-contained as possible, many classical results are included. Thus we



[

viii

only require knowledge with the theory of semisimple algebras and modules,
including basic character theory (if this is not present, we recommend
Feit (1967), Serre (1967) or Isaacs (1976)) and elementary facts about
finite groups. Also to advance to the fromtier as quickly as possible we
have added suitable hypotheses at an early stage whenmever convenient if it
saves us some time. Just as an example, we only prove Krull-Schmidt for
finite-dimensional algebfas, not artinian rings in general. Usually, we
will give a reference to Curtis and Reiner (1981) and (1985) for the more
general results.

As the whole idea is to present--whenever appropriate--methods
that Brauer avoided or did not even have at hand, the reader will find
relatively few references to Brauer's work with the exception of more
recent papers such as (1968), (1969) and (1971), and Brauer and Feit (1959).
As references to Brauer's Main Theorems, we use the survey articles (1956)
and (1959) rather than the original papers and otherwise refer to Feit
(1982), which gives a very detailed account of Brauer's work and methods.
The justification is that if we want to improve Brauer's theory
substantially, we have to come up with something completely new. Recent
contributions to which we have devoted particular attention are among others
Alperin and Broué (1979), Benson and Parker (1983), Brauer (1968) and
{1971), Brandt (1982b), Burry and Carlson (1982), Feit (1969), Green
(1974), Kn¥rr (1979), Landrock (198lc) and Scott (1973). This choice is
no indication of an attempted evaluation of importance. These are simply
the sources we have decided in particular to work with or discuss, leaving
others out which equally well deserve careful attention such as Dade's
deep work on endopermutation modules or Puig (1981) which is very far-
reaching, as well as a number of other topics. Also we do not concern
ourselves with the theory of blocks with cyclic defect groups, nor with
p-solvable groups, which have recently been treated with great care and
detail in Feit (1982). Likewise, Glauberman's powerful and important
Z -Theorem, which has been indespensable in the classification of the
finite simple groups has not been included for the simple reason that we
have nothing new to contribute which is not already treated in the
literature (see Feit (1982) again, for instance).

It is striking however how many of the deeper results in block
theory were anticipated by R. Brauer and how hard we have to work to
advance further. And we want to point out that some of Brauer's later

work (quoted above) has been a major source of inspiration to a number of

ix

people over the last decade, which is the reason why a major part of
Chapter III, Section 8§, is devoted to these papers.

In 1971, Paul Fong gave a well-coumposed and inspiring course
at Aarhus University om representation theoxy (see Fong (1971)), which
in turn was partly inspired by Dade's lecture notes (1971) and Green's
fundamental work in the sixties. Since 1975, I have given a number of
lecture series at Aarhus on this subject, which gradually have developed
from being close to Fong's lecture notes into part of the present book.,
Other direct or indirect sources of inspiration have been Michler (1972)
and in particular Greem (1974) apart from a great deal of Green's work in
the sixties and seventies, which perhaps is the major general source of
inspiration for Chapter II. Also I have profitted a lot from useful
comments by and discussions with my students and others who have attended
my lectures, in particular, Ivan Damg;rd and Carsten Hansen from the first
category and Dave Benson from the second, all of whom helped me avoiding
considerably more blunders than present now. Other results or approaches
are inspired from my collaboration with G. Michler and discussions with
J. L. Alperin, H. Jacobinski and D. Sibley and I have enjoyed comments from
K. Fuller who read part of Chapter I and D. Burry ﬁho read part of
Chapter II. The first version of Chapter II similar to the first half of
the present was conceived and presented during my visit at University of
Oxford in the spring of 1981 and I want to thank Michael Collins warmly
for making this possible, and the British Science and Engineering Council
for its financial support. But the major part of the final version was
written during the academic year 1982-83 at the Institute for Advanced
Study, Princeton. I am extremely grateful to the Institute, to
NSF Grant MCS-8108814 (AQl), and to Aarhus University for the help and
financial basis for my stay there. And I want to thank Marianne for
her support and understanding as well.

Finally, I wish to thank Peggy Murray (who typed Chapter II)
and in particular Kathy Lunetta (who typed the rest) for their excellent,
fast and reliable typing as well as their patience with me and my
manuseript.

A few remarks on notation and basic assumptions: If A is a
ring, AA means A considered as a right A-module, and except for a
very few cases, a module is always right and finitely generated, free over
the ring of coefficients. Also, if G is a group and XC G, a & X means

= G
a8 = g 1ag € X for some g & G. Likewise if H, K <G, H <K means
G



X

u8 < K for some g & G. Furthermore, H/G means an arbitrary right
transversal of H in G, G\H an arbitrary left and H\G/K an arbitrary
transversal of double coset representatives.

One more thing: As one tool is used over and over againm, it
only seems fair to express our gratitude towards this as well. Therefore

in more than one sense of the work, this book is dedicated to the trace
map.

Princeton, New Jersey
June, 1983

Peter Landrock

CHAPTER I. THE STRUCTURE OF GROUP ALGEBRAS

1. Idempotents in rings. Liftings.

In this section, A 1is an arbitrary ring. Recall that an
element O # e € A 1is called an idempotent if e2 = e. Two idempotents
ey and e, are said to be orthogonal if eje, = e, = 0, and an
idempotent is called primitive if it is not the sum of two orthogonal

idempotents.

Definition 1.1. Let A be a ring and M an A-module. Then

M 1is said to be decomgosablé if there exist non-trivial submodules Ml
and M2 of M such that M =M @ M,. Otherwise, M 1is called

1 2
indecomposable.

Lemma 1.2. Let A be a ring and e & A an idempotent. Then

eA 1is .indecomposable as an A-module if and only if e 1is primitive.

Proof: One way is trivial. Conversely, assume eA = Al @ A,

e = e, + ¢

where 0 # Ai is a right ideal for i = 1,2. In particular, 1

2
for some ei.G'Ai’ i =1,2. Moreover, ee, = e for i=1,2, as
e; 6 eA. Hence

2
(1) g8, = (e—ez)e2 =e, -e

5 € Aln A2=0.

2 2
Thus ee, = 0 and e, = e,. So by symmetry, e,e. =0 and e] = e, as

271 1
well. Thus e 1is not primitive.

Definition 1.3. By an idempotent decomposition of 1 in A,

we understand a set of pairwise orthogonal idempotents

T
that 1 = _Zl e;. An idempotent decomposition is called primitive if all
1=

the involved idempotents are primitive.

AR such



Remark. The importance of idempotent decompositions is of
course, in view of Lemma 1,2, that they corresgond to direct sum
t
deco iti . = . n 1= e., where e.g A, i
compositions. If A, 12 A;, the i£1 i 1€ A, 18
necessarily an idempotent decomposition, and vica verca. But even more

holds, namely

Theorem 1.4 (Fitting). Let A be a ring and M an A-module.

Denote the endomorphism ring of M over A by E. Then

i) There is a one-to-one correspondence between idempotent

decompositions 1= I e, in E and decompositions M= @ _ M.,
. ie1l 1 Loler 1
where I is finite, characterized by the fact that ej is the projection

of M onto M. with kernel @ M,.
J ifdj
ii) Let M = Ml ® M2 = N1 (] NZ’ and let e be the

projection onto M1 with kernel MZ, f the projection onto N, with

1
kernel N2. Then M1 = Ni if and only if eE = fE as E-modules.

1ii) Let e € E be an idempotent. Then e(M) is indecom-
posable if and only if eE is indecomposable.

Proof: 1) and iii) are obvious.

il) Let ¢ : M >N be an isomorphism, We may consider ¢

as an element of E by setting ¢(M2) = 0. Then ¢ = fde. We therefore
define ¢ :

eE >~ fE by &(a) = ¢a. As ¢ 1is an isomorphism, it easily
follows that ¢ is as well, Conversely, let ¢ : eE + fE be an
isomorphism of E-modules. Let &(e) = £ogs ¢(e¢e) = £, vhere ¢, ¢ € E.
Then f¢fe = 0(e)e = d(e) = f¢f. Similarly, e¢ef = e¢e, as

®(e¢ef) = ¢(e¢e)f =f= @(e¢e). Also, £ = ¢(e¢e) = d(e)g, = £ocdy -
Similarly, e = e¢e¢f, as ¢(e¢e¢f) @(e¢e)¢f = f¢, = ®(e). But then

[{
Hh

(2) (£o ) (e ) = f6.0, =
3) (e )(fo.) = ep ¢, = e

which proves that f¢f : Ml + N, 1is an isomorphism.

1

We end this section with a very important theorem on lifting

idempotents. Recall that an element v € A is called nilpotent if there

exists n e N such that v =0. If v is nilpotent, then obviously

1 +v 1is a unit,

Theorem 1.5. Let A be a ring and N a nilpotent ideal of
A. Then

i) Let e be an idempotent of A = A/N. Then there exists

an idempotent e in A such that e + N=2¢ ; (e is said to be lifted

to e). If e' is another such idempotent, there exists v & N such

that
' -1

4) e' = (1+v) = e(l+v).

ii) Units of A always 1lift to units of A.

- t - -
iii) Let 1 = 'Zl e be an idempotent decomposition in A.
1=
t

Then there exists an idempotent decomposition 1 = % e, in A such

i=1

that e, =e, + N for all . i. Again, if I e
i i=1

decomposition in A, there exists v e N such that

is another such

-1
v
(5) e; = (1+v) ei(1+v)
for all 1i.

iv) Let ee A be an idempotent and let e & A be an
idempotent such that e + N = e. Then e is primitive if and only if e

is primitive.

Proof: We first prove the theorem under the additional
assumption that Nz = 0.

i) Let fé& A such that f + N

e. Then f2 =f +y for

some y & N. Furthermore, for any x€ N,

(6) (f+x)2 = % 4 xf + fx = (f+x) - x + y + xf + fx.

Thus we want to choose x such that y = x - xf - fx. To obtain this, we

magically choose x = (1-2f)y. As y = f2 - £, x commutes with £ and



(7) x - xf - fx

(1-2£)y - 2£(1-2£)y
(1 +4£% - 4E)y
(l+4y)y = v

as y€ N. Thus e = f + (1—2f)(f2—f) indeed is an idempotent in e.
Next let e' be another idempotent in e. Hence e' =e + 2z
for some z€ N. Then e +z = e + ez + ze and thus (l-e)z = ze, which

forces eze = 0. Likewise, {(l-e)z(l-e) = 0. But now, for any T € A,

(8) r = ere + er(l-e) + (l-e)re + (l-e)r(l-e).

Thus (8) reduces to

(9) z = ez(l-e) + (l~e)ze

for r = 2. To finigh, we need ve& N such that

(10) e +z= (l-v)e(l+v) = e - ve + ev

gince vev e N2 = 0., This forces z = ev - ve., So this time, we define
an v := ez(l-e) ~ (l-e)ze

vwhich has the required property by (9).

ii) Let u + N =u for u a unit in A. Then there exists
veéeA such that uv =vu =1 with v=v + N, Thus u =1+1y and
vu =1+ z for suitable y,z € N, Hence uv and wvu are units, which

in turn forces u to be a unit.

iii) We use induction on t, the first step being 1i).
Furthermore, by 1) again, there exists an idempotent e € A such that
e +N= ;t . Let A' = (1—et)A(1-et) which is a subring of A with

1 - e, as unity. Moreover, e,r =rte =0 for all r € A'. The

homomorphism A + A induces a homomorphism of A' onto (T-Et)K(I-Et)

with kernel N' = A' N. In particular, N'2 = 0. However, ;1""’Et—1
t-1

all lie in (T—Et)K(T—Et), and l-e = % Ei is an idempotent
i=1

decomposition in this ring. Hence induction yields the existence of an

5
t-1
jdempotent decomposition 1 - e, = z e in A', thus proving the first
i=1
part of iii).

To show uniqueness in the sense as stated in iii), we again
apply induction on t and as before, i) establishes the case t=1,
Moreover, i) allows us to assume in the general case that e, = eé.
Induction now yields a ve N' €N such that (1—v)ei(1+v) =e; for all
Py 1 = - = =
i <t-1. But as veA', eV =ve = 0. Hence (1 v)et.(1+v) e = e
as well.

iv) One way is trivial. Conversely, assume e = fl + 22
with El and fz orthogonal idempotents. Now e is the unity of eAe

and A > A induces a homomorphism of eAe onto eAe with kernel

N0 eAe. Then i) asserts that e = El + EZ can be lifted to eAe, and

e 1is not primitive.

Finally, if N 1is an arbitrary nilpotent ideal with N° ,

we first 1lift to A/N2 and apply induction on N to lift to A/N" = A.

2. Projective and injective modules.

For the convenience of the reader, we recall the basic
properties of projective and injective modules.
Let A be a2 ring. Then the direct summands of A, have

A
particularly nice properties. One of them is the property defined in

Defiuition 2.1. Let A be a ring. Then an A-module P is
called projective if for any two A-modules ¥ and N, and A-homomorphisms
M : M> N, which is surjective, and € : P + N, there exists a

homomorphism vy : P + M such that

(1) Y €

commutes.

P and P A-modules.

Theorem 2.2. Let A be a ring, Pl’ 2

Then we have



i) Any free A-module is projective. In particular, A, is

a projective A-module.
ii) P, 8P, is projective if and only if P, is projective,
i=1,2,

iii) P is projective if and only if there exists an A-module
M such that P @ M is free.

iv) For any A-module M, there exists an exact sequence

0+ N> PM > M+ 0 with PM projective.

P 1is projective if and only if every exact sequence
0+N>M+ P> 0 splits.

Proof: The reader is probably already familiar with these

homological trivialities. Otherwise he or she is urged to produce the
proofs.

Having defined projectivity one may feel tempted to discuss
the dual property, injectivity. We shall see later that for group algebras
they are identical. Neverthéless, it is quite convenient to be aware of
the formal difference, Moreover, if we turn to algebraic grouﬁs over

infinite fields, there really is a difference.

Definition 2.3. An A-module I is called injective if for
any two A-modules M and N, and A-homomorphisms A : N > M, which is
injective, and € : N > I, there exists a homomorphism p : M+ I such

that the following diagram commutes

(2) €

Theorem 2.4. Let Il’ 12 and I be A-modules. Then

i) I,e1, is injective if and only if L is injective,
i=1,2.

) ii) For any module N there exists an exact sequence
0+ N> IN + M-+ 0 with IN injective,

iii) I is injective if and only if every exact sequence
0+I+M>N->0 splits,

Proof: See the proof of Theorem 2.2. (ii) needs some

elaboration,)

We will in the following use these basic properties of
projective and injective modules without giving special reference, as a

main rule.

3. The radical and artinian rings.

A discussion of the following definitions and basic results
may be found in a great number of books on ring theory, of which Artin,
Nesbitt and Thrall (1944) is the classical source. For a more contemporary
treatment which is in concurrence with our discussion here, we suggest
Anderson and Fuller (1973). Anyway, before embarking on the study of this
section, the reader should make sure to be familiar with the theory of

semisimple rings and modules.

Definition 3.1. Let A be a ring. The radical of A, which
will be denoted by J(A), 1is defined as the intersection of all maximal
right ideals of A.

Lemma 3.2, Let A be a ring. Then
i) Let E be a simple A-module. Then EJ(A) = O.

ii) Let x € A and assume Ex = 0 for all simple A-modules
E. Then xé& J(A).

iii) J(A) 1is a 2-sided ideal.

Proof: Let E be an arbitrary but fixed simple A-module, and
choose ve E with vA # 0. Then a + va defines a module homomorphism
A > E. Denote the kernel of this map by ME' As E is simple, ME is
a right maximal ideal in A, and thus contains J(A) by definition. This
proves i) and ii), which together characterize J(A) as the set of elements

in A which annihilates all simple A-modules, from which iii) follows.



Definition 3.3. Let A be a ring, M and A-module. Then M
is called (right) artinian, if any descending chain of submodules becomes
stationary at some point. M is also said to satisfy the d.c.c. (descending
chain condition), or the minimal condition.

Likewise, A is called a right (left) artinian ring, if A,

(AA) is artinian. If A is right and left artinian, A is called

artinian.
Definition 3.4. A descending chain

= =0
(1) M M03M13 oM

of submodules of the A-module M is called a composition series if

Mi/Mi+1 is simple for all 1i.

Remark. If M is not finitely generated, M may not have a
composition series, even if A is right artinian. In fact, if M is
not finitely generated, M may not even have a maximal submodule.

However, if M is finitely generated, there is no problem as we proceed
to see. The point is

Lemma 3.5. Let A be a ring, and let M be a finitely

generated A-module. Then M has a maximal submodule. In particular,
MI(A) C M.

Proof: The reader is probably familiar with the fact that

the first statement follows from Zorn's lemma. Now the second follows

from Lemma 3.2i),

Theorem 3.6. Let A be a right artinian ring. Then
i} J(A) 1is nilpotent.

ii) Let M be a finitely generated A-module. Then M/MJI(A)
is semisimple.

iii) A/J(A) is a semisimple ring.

Proof: i) - If J(A) is not nilpotent, there exists an n€ N
with J(A)" = J(A)n+1 # 0 by definition. Hence there exists a ¢ J(A)

. n . .
with aJ(A) # 0. Moreover, as A 1is artinian, we may even assume that

I =aA, I a minimal ideal such that IJ(A)n # 0. Thus in fact

aA = aJ(A) by minimality of I, as aJ(A)n+1 = aJ(A)n, and thus

aAJ(A) = aA, a contradiction by Lemma 3.5. .
To prove ii) and iii), it suffices to prove that A/J(A) is
a semisimple A-module. But as A is artinian, there exists finitely many
T

right maximal ideals Myyeeesd such that J(A) = (} M. by the

i=1
characterization of J(A) in the proof of Lemma 3.,2. Hence the canonical

i
r

homomorphism A/J(A) > @ A/Mi is injective,
i=l

Corollary 3.7. Let A be a right artinian ring and M a
finitely generated A-module. Then MIJ(A) is the unique minimal

submodule with M/MJI(A) semisimple.

Notation: In view of Corollary 3.6, we set J(M) := MJ(A) and
call this the radical of M.

Corollary 3.8. Let A be a right artinian ring and M a
finitely generated A-module. Then

i) M 1is isomorphic to a direct sum of indecomposable
modules.

ii) M has a composition series.

Proof: This follows immediately from the fact that J(A) 1is
nilpotent and A/J(A) and M/MJ(A) are semisimple, as does

Corollary 3.9 (Nakayama's lemma). Same assumptions as above.

Let L be a submodule of M such that L + MJ(A) = M. Then in fact
L =M,

The following is now straightforward though tedious to
establish using the fundamental homomorphism theorem and we (wisely) omit

the proof.

Theorem 3.10 (Jordan-HYlder). Let A be a ring and M an

A-module. If M possesses a composition series, any two composition
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series contain the same number of members, and the simple factor modules

arising from these series may be arranged to be pairwise isomorphic.

[ad

Defipition 3.11. Let A be a ring, and assume AA = @ P

i=1
where Pi is indecomposable. (This, for instance, holds if A 1is right
artinian, as we have just seen.) These summands are called the Brincigal

indecomposable modules (p.i.m.'s) of A.

It is now clear from Lemma 1.2 that a right ideal P in a
ring A, with the above property, is a p.i.m. if and only if there exists
a primitive idempotent e such that P = eA.

Before we prove a number of important structure theorems
describing the p.i.m.'s of a right artinian ring, we need the following

important consequence of Theorem 1.5:

Theorem 3.12. Let A be a right artinian ring. Then

t s

z e, = £ £. be primitive idempotent
i=1 Ci=l

decompositions. Then s =t and there exists a unit u in A such

i) Let 1

that u-leij =f

o) for all i, where ¢ ‘is some permutation of
{1,2,...,8}.

ii) Let e,f A be idempotents. Then eA = fA if and only

. . . -1
if there exists a unit u & A such that u "eu = f,

Proof: We assume these results are familiar to the reader if
A is semisimple. But then i) follows from Theorem 1.5 while for ii) we

have to remark in addition that if eA ~ fA, then eAfeJ(A) = TA/£T(A).

Corollary 3.13. Let A be a right artinian ring. Then

i) The p.i.m.'s of A, are uniquely determined up to

isomorphism. 1In other words, if
(2) A, @& P, =~ 8 Q
A jer ' jeg !
where the P, 's and Qj 's are all indecomposable, then there exists a

bijecti : - . ‘.
jection ¢ I >+ J such that P1 Q¢(1) for all 1

ii) A finitely generated indecomposable A-module is projective

if and only if it is isomorphic to a p.i.m. of A,.

11.

Proof: i) is just a reformulation of Theorem 3,12i) in view

of the remark following Definition 1.3.

ji) follows from the genmeral properties of projective modules.
The following result is of extreme importance in what follows.

Theorem 3.14. Let A be a right artinian ring and {ei} a

set of primitive idempotents. Set Pi = eiA. Then
i) Pi contains a unique maximal submodule, namely eiJ(A).

ii) The following are equivalent
a) Pi/eiJ(A) and Pj/ejJ(A) are isomorphic
b) Pi and Pj are isomorphic
c) Thire exists a unit U in A/J(A) such that

ueju = ey, where e, =-¢e + J(a) for k_; i,j

d) There exists a unit u in A such that u eju = ej.

Proof: i) Let.'M be a maximal right ideal in Pi' Then
Pi/M is a simple A-module. In particular, eiJ(A) = PiJ(A) C M by
Lemma 3.2i). However, as e, =e ¥ J(A) is a primitive idempotent in
A/J(A) and eiA N Ja) = eiJ(A), we have that eiA/eiJ(A) is simple.
Thus, in fact, eiJ(A) = M.

ii) The equivalence of b) and d) was proved in Theorem 3.12,
and ¢) and d) are equivalent by Theorem 1.5. Finally, the equivalence of

c) and a) is a well-known property of semisimple rings.
In particular, we have proved

Corollary 3.15. There is a one~to-one correspondence between
the isomorphism classes of the p.i.m.'s of A and the isomorphism classes

of the simple A-modules.

4. Cartan invariants and blocks.

We proceed to define the so-called Cartan invariants of an

arbitrary artinian ring.
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Definition 4.1. Let e seeerey be primitive idempotents of
the artinian ring A such that {eiA} form a complete set of represen-
tatives of isomorphism classes of p.i.m.'s of A (in particular, they are all
orthogonal to each other). Let Pi = eiA, and set Ei = Pi/eiJ(A)'

The Cartan invariant cij is defined as the multiplicity of

E. as a composition factor in Pi' The m x m matrix {ci.} =C 1is

J
called the Cartan matrix.

Later we shall prove several important results on Cartan

invariants for group algebras. Here, in the general case where much less

holds, we only prove

Lemma 4.2. The principal indecomposable Pi has a composition

factor isomorphic to Ej if and only if Piej (= eiAej) # 0.

Proof: Assume Piej # 0, and let 0 #xe Piej' Then

xej = x, and we may define an A-homomorphism ¢ : Pj + PiejA < Pi by
$(v) = xv. Since Pj has a unique maximal submodule, namely e.J(A), the

1

E.

kernel of ¢ must be contained in ejJ(A), and thus ¢(Pj)/¢(ejJ(A)) ;

is a composition factor of Pi'

Conversely, if Ej is a composition factor of Pi’ there
exists a submodule M of Pi with a submodule N such that M/N = E..
As Pj is projective, the map Pj > Ej may be factored through M. In

particular, there exists a non-trivial homomorphism ¢ : Pj > Pi' Hence

¢(ej) # 0. But then ¢(ej) = ¢(ej)ej # 0 which shows that Piej # 0.

Definition 4.3. Let Q and Q, be p.i.m.'s of A. Then
Q1 and Q2 are said to be linked, if there exists a sequence of p.i.m.'s
Ql = Pl’PZ""’Ps = Q2 such that Pi and Pi+1 have a composition factor
in common for all i. For notation, we use Q1 = QZ'

Clearly, = 1is an equivalence relation on the set of p.i.m.'s
of A. Let Pl,...JPr denote the equivalence classes under =. By the
block Ei of A associated with Pi, we understand
(1)

B, = {I0|Qe®;, Q <Al

13

Theorem 4.4. The blocks of A are indecomposable 2-sided

ideals of A and artinian rings. Moreover,
T
(2) A= o B,

and (2) is the unique decomposition of A into a direct sum of indecom-
posable ideals. In particular, if e, is the unity of Bi’ then

€1se-nse  are the only centrally primitive idempotents in A.
Proof: By definition, A =L Bi’ and

(3 B, = {Zed |eA e P, e a primitive idempotent}
which is a right ideal. Moreover, if e € Bi and f € Bj are primitive
idempotents and i # j, Lemma 4.2 asserts that eAf = 0, by definition of

blocks. Hence (3) yields that B, Bj = 0., Consequently,
= . ©B. . .
(4) mB, = (I 1133.)13l B, B, S B,

and thus Bi is in fact a 2-sided ideal. Next we claim that the sum
ZBi is direct. Indeed, this is a standard argument: Let 1 = Zei, where

e. e B., and let 0 = La,, where a.é& B.,. Then
i i i i i
. =a.(Ze;) = a.e, = (Za,)e, =0
(5) ay aJ( 1) aje, (za;) 3

for all j, -as BfBj =0 for 1i# j. It is now straightforward to show
that e, is a unity of B, and that B, is an artinian ring. Finally,
let A= 0@ ®H where @ and &£ are 2-sided ideals and % is
indecomposable as such, Let 1 =e + f with e e @ and fe& B . Again
it follows that ®® =#&0 = 0, and consequently f 1is a central
idempotent, and primitive as such as # is indecomposable. Hence there
exists exactly one i with eif # 0. Thus e, = f as they are both

primitive, and & ='Bi, from which the rest of the theorem follows.

We now leave the general theory of artinian rings to concentrate
first on finite dimensional algebras and then group algebras and, to some

extent, symmetric algebras.
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5, ¥inite dimensional algebras.

First of all, we want to make the convention that for the rest

of this book, a module is finitely generated.

In this particular section, we furthermore assume A to be a
finite dimensional algebra over a field F. Obviously, A is an artinian

ring then, and we will use the notation of Definition 4.1.

An important point we want to make in our whole discussion is
how a number of crucial properties of a module M over A are closely
related and often entirely determined by those of its endomorphism ring.
We have already seen a demonstration of this in Theorem 1.4.

For M and N A-modules, we denote HomA(M,N) by (M,N)A.

Lemma 5.1. With the notation above, we have

i) (M,M)A is a finite dimensional algebra over F.

1) (™ D {0 e 0% | 000 € MIA)}.

Proof: i) is trivial.

ii) Let Y4 denote the right hand side of ii), which
obviously is an ideal. Let ¢ € “r for some r. Then ¢(M) SMJ(A)r
and thus YU is nilpotent, which proves that W SJ((M,M)A).

Remark. Equality does not always hold in ii) above.

Recall there is a one-to-one correspondence between idempotent
decompositions 1 = Zei in (M,M)A and decompositions M = @ Mi’
i

characterized by the fact that e,

is the projection of M onto Mi with
kernel

® M.. Also (M,M)A is artinian, of course.
j#
Theorem 5.2. Same notation as above. Then

i) (Krull-Schmidt.) The indecomposable direct summands of

M are uniquely determined up to isomorphism. In other words, if

(1) M= @& M = o M
ier * jer

19
oo
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where the Mi 's and M" 's are indecomposable A-modules, there exists a
bijection ¢ : I » J such that Mi = MY

$(1)
ii) Let M = Ml -] Mz = Nl ] NZ’ and let 1 = e+l-e = f+l-f

be the corresponding idempotent decompositions in (M,M)A. Then M

for all 1i.

=N
A -1 1 1
if and only if there exists a unit u € (M,M)” such that e = u "fu.

Remark: Krull-Schmidt in fact holds even if A 1is only
(right) artinian, but then the proof is no longer just an application of
Theorem 3.12 (see for instance Curtis and Reiner (1981)), as we then lack

. . A . .
the information that (M,M)" 1is artinian.

Proof: The decomposition in (1) corresponds to primitive
idempotent decompositions in (M,M)A. However, as we saw in the proof of
Theorem 3.12 any such two decompositions are conmjugate via a umit in
(M,M)A, from which 1) follows.

ii) By 1lheorem 1.4, it suffices to prove that this holds for

direct summands of EE’ where E = (M,M)A. But again this follows from
Theorem 3.12.

As an application of Theorem 3.14, we get

Lemma 5.3. Same notation as above. Then M is indecomposable

if and only if (M,M)A/J((M,M)A) is a division algebra over F.

Remark. A more general result, which again is beyond the scope

of this book, states that if A is a ring and M is an A-module with a

composition series, then M is indecomposable if and only if (M,M)A is
local (see Curtis and Reiner (1981)).

Lemma 5.4. Let e & A be an idempotent and let M be any
A-module. Then

(2) (eA,M)A = Me

as. F-spaces.
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Proof: We define T : (eA,M) + M by T($) = ¢e). Then T
is an F-linear map. Moreover, ¢(e) = 0 forces ¢(e)a = ¢(ea) = 0 for
all a g A, thus forcing ¢ =0, i.e., T is injective. Furthermore,
$(e) = ¢(e)e € Me, so T maps into Me. Conversely, if x e M, we
define 0, € (eA,M)A by ¢x(a) = xa., Then T(¢x) = ¢x(e) = xe. Thus T
is an isomorphism.

Corollary 5.5. let e &A be an idempotent. Then

(3) (eA,eA)A = ele

and T : (eA,eA)® » eAe defined by T(¢) = ¢(e) is an F-algebra

isomorphism.
Lemma 5.6. Let e € A be an idempotent. Then
(4) J(ede) = eJ(A)e = J(A) N ehe.

Proof: The last eduality is obvious. Moreover, elJ(Ade is a

nilpotent ideal in eAe, hence contained in J(eAe). Finally,
T
(5) (AJ(EAE)A)r = (AeJ(eAe)eA)r = AJ(ehAe) A.

Thus J(eAe) generates a nilpotent ideal in A, which shows that
J(ehe) € J(A).

This enables us to improve Lemma 5.1 for modules of the form

eA, e an idempotent.

Corollary 5.7. Let ee€ A be an idempotent. Then
(6) T((eh,e)T € {4 € (ea,en)® | 0(er) gea NI}
for all r, and equality holds for r = 1.

Proof: By Lemma 5.6,

&) J(eae)T = (J(A) N ere)’ € IA)T N ede.
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Moreover, ¢ & J((eA,eA)A)r if and only if ¢(e) Jete)” by
Corollary 5.5, from which (6) follows. The equality for r =1

is then
obtained from Lemma 5.1.

Lemma 5.8. Assume F is a splitting field of A/J(A), and
let Ei be a simple A-module. Let M be an arbitrary A-module, and

‘denote the multiplicity of Ei as a composition factor of M by a,.
Then

. A
(8) a; = dim ((P,,M)7)
where B is the p.i.m. corresponding to E..
Proof: Recall that by Theorem 3.14i) and Schur's lemma,
A
(9 (Pi’Ei) = F

as an F-space. Let

(10) M=m3%3.”3%=0

be a filtration of M with Mj(Mj+1 simple for all j. Choose jl
maximal so that no composition factor of M/M,

is isomorphic to Ei' It
immediately follows that L

(11) W= @0t = e )b
i i3,

as any factor module of Pi has E, as a composition factor. Hence

induction on dimFM allows us to assume that jl =1, and moreover that
the dimension over F of Wl i= (Pi’MZ)A is ai—l. Furthermore, as P,

is projective, there exists ¢]'e W with ¢1 € Wl, or in other words

(12) (¢1(Pi)+M2)/M2 = Ml/M2 = B,

Now let ¢ € W be arbitrary. Then (9) and (12) imply the existence of
A € F such that
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(13) ([¢—M>1](Pi) + Mz)/MZ = 0.

Hence ¢—A¢1 € W, and we are done.

Corollary 5.9. Assume F 1is a splitting field of A/J(A).
Then the Cartan invariants cij of A satisfy

. A
(14) ci3 = dlm.F((Pj,Pi) )
with the notation of Section 4.

Remark. The proof above shows that in general, if F 1is
arbitrary, then '

15 i A
(15) €53 < dlmF((Pj,Pi) )
and equality holds if and only if (Ei,Ei)A >~ F, i.e., if and only if F

is a spliting field of the Wedderburn component‘of A/J(A) corresponding
to E..
i

6. Duality.

We are now/ready to take advantage of the fact that a group
algebra over a finite group not only is a finite dimensional algebra but
has a basis which forms a group! The following simple and yet extremely
important definition takes advantage of that fact. It immediately leads

us to a strong property of projective modules of a group algebra.

Definition 6.1. Let R be a commutative ring and G a finite
group. By an R[G]-modale M, we will always mean a module which considered

as an R-module is free and finitely generated.
*
By the dual or contragredient, M of M, we understand

(L ag, )R

with the following action by G: for all ¢ e (M,R)R and all g& G, we
define

19
-1
(2) (0g){x) = ¢l{xg )

for all x € M. (The reader is urged to check that this makes (M,R)R
into an R[G]-module of the same rank over R as M.) Finally, M is

*
called self-dual if M =~ M as R[G]-modules.

Example: Let R =C, and let X be the character afforded by

*
M. Then the character of M 1is Y.
We have the following evident properties of dual modules.

Lemma 6.2. Same notation as above. Then
. x %
i) M) =M.
. * * *
ii) (M@N) =M @N.

*
iii) M is indecomposable if and only if M is indecomposable.

* *
iv) M =N if and only if M =N .

Proof: Exercise.

Recall that for a group G, G and cP are isomorphic, and

g+ g is an isomorphism. For the same reason, we have

Theorem 6.3. Same notation as above. For any g & G, define

¢g : R[G] » R by

(3) ¢g(2agg) = ag.

*
Then (R[G]) = 2R¢g’ and (¢g)h = ¢gh' Moreover
(4) Eagg d Zagq>g

- » v . *
is an R[G]-isomorphism between R[G] and RI[G] . 1In other words, RI[G]

is self-dual.

Proof. Only (4) has to be checked. But



