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PREFACE

The book is based on my lecture notes “Infinite dimensional Morse theory
and its applications”, 1985, Montréal, and one semester of graduate lectures
delivered at the University of Wisconsin, Madison, 1987. Since the aim of
this monograph is to give a unified account of the topics in critical point
theory, a considerable amount of new materials has been added. Some of
them have never been published previously.

The book is of interest both to researchers following the development of
new results, and to people seeking an introduction into this theory. The
main results are designed to be as self-contained as possible. And for the
reader’s convenience, some preliminary background information has been
organized.

The following people deserve special thanks for their direct roles in help-
ing to prepare this book.

Prof. L. Nirenberg, who first introduced me to this field ten years ago,
when I visited the Courant Institute of Math Sciences.

Prof. A. Granas, who invited me to give a series of lectures at SMS,
1983, Montreal, and then the above notes, as the primary version of a part
of the manuscript, which were published in the SMS collection.

Prof. P. Rabinowitz, who provided much needed encouragement during
the academic semester, and invited me to teach a semester graduate course
after which the lecture notes became the second version of parts of this
book. '

Professors A. Bahri and H. Brézis who suggested the publication of the
book in the Birkhiuser series. '

Professors E. Zehnder and A. Ambrosetti, who provided a favorable
environment during the period in which this book was written.

Mrs. Ann Kostant, for aiding me in editing and typesetting the manu-
script.

My teacher Prof. M. T. Cheng for his constant support and influence
over the many years.

And, of course, I thank my wife and my children for their love, patience
and understanding while I was writing this book.

Kung-Ching Chang
Mathematical Institute, Peking University, Beijing.



INTRODUCTION

This book deals with Morse theory as a way of studying multiple solutions
of differential equations which arise in the calculus of variations. The theory
consists of two aspects: the global one, in which existence, including the
estimate of the number of solutions, is obtained by the relative homology
groups of two certain level sets, and the local one, in which a sequence
of groups, which we call critical groups, is attached to an isolated critical
point (or orbit) to describe the local behavior of the functional. Morse
relations link these two ideas. A

In comparison with degree theory, which has proved very useful in non-

linear analysis in proving existence and in estimating the number of solu-

tions to an operator equation, Morse theory has a great advantage if the
~ equation is variational. Relative homology groups and critical groups are
series of groups that provide both a finer structure and better estimate of
the number of solutions than does the degree, which is only an integer.
The relationship between the Leray-Schauder index and critical groups is
established. ‘

The minimax method is another important tool in critical point theory.
In this volume it is treated in a unified manner from the Morse theoretic
point of view. The mountain pass theorem, the saddle point theorem and
multiple solution theorems, discussed in Ljusternik-Schnirelman theory, in-
dex theory and pseudo index theory, are studied by observing the relative
homology groups for specific level sets. Critical groups for critical points
are also estimated. The purpose of this treatment is to provide a unified
framework which contains different theories so that various techniques are
able to be combined in estimating the number of critical points.

Applications to semilinear elliptic boundary value problems, periodic
solutions of Hamiltonian systems, and geometric variational problems are
also emphasized. These problems are chosen for their own interest as well
as for explaining how Morse theory is applied.

The book is organized into five chapters and an appendix. Chapter 1 is
devoted to Morse theory. Sections 1 and 2 review the basic facts of algebraic
topology and infinite dimensional manifolds, respectively. Two deforma-
tion theorems, which play a fundamental role in critical point theory, are
proved in detail in Section 3. Morse relations and the Morse handle body
theorem are studied in Section 4. Section 5 deals with Gromoll-Meyer the-
ory and discusses the main properties of critical groups for isolated critical
points, including homotopy invariance and a shifting lemma. The Marino-
Prodi approximation theorem is also studied in this section. In the rest of
the chapter, Morse theory is extended: in Section 6.1, to manifolds with
bo: .daries together with certain boundary value conditions, and, in Sec-
tion 6.2, to locally convex closed sets. The latter extension is motivated
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by variational inequalities. G-equivariant Morse theory is investigated in
Section 7, where all the main results of Sections 4 and 5 are completely
extended to invariant functions under a compact Lie group action.

Chapter 2 views critical point theory with respect to homology groups.
Sections 1 through 4 are devoted to this study. The homological link,
subordinate homology classes, and Cech-Alexander-Spanier cohomological
rings are used to link up minimax principles with Morse theory. Morse
index estimates in Minimax theorems are also presented. In Section 5,
we give some abstract critical point theorems which will be applied in
subsequent chapters. Two perturbation theories are studied in Section 6,
one of which is concerned with the perturbation effect on a critical manifold,
and the other with Uhlenbeck’s perturbation theory.

Semilinear elliptic BVPs are considered to be models in the applications
of critical point theory. The reader will find that there are many different
and very interesting results presented in Chapter 3. Although some of
them will be familiar, the proofs given here are new and are based on
the above unified framework. Problems with superlinear, asymptotically
linear and bounded nonlinear terms are studied by example in Sections
2—4. Variational inequalities are also discussed.

Chapter 4 deals with some topics on Hamiltonian systems. Since there
are special books on this subject. we satisfy ourselves with introducing
material that does not overlap. The following problems were selected:
asymptotically lincar systems, Hamiltonians with periodic nonlinearities,
second order systems with singular potentials, the double pendulum equa-
tion, Arnold conjectures on symplectic fixed points and on Lagrangian
" intersections. Our treatment of these is limited to examples.

In the final chapter, we analyze two-dimensional harmonic maps and the
Plateau problem for minimal surfaces as examples from geometric varia-
tional problems. Because of the lack of the Palais-Smale condition, Morse
theory for harmonic maps is established by the heat flow. The Plateau
problem is considered to be a function defined on a closed convex set in
a Banach space. Extended Morse theory is applied to give a proof of the
Morse-Tompkins- Sh1ﬁ'man theorem on unstable coboundary minimal sur-
faces.

In the appendix, Witten's proof of the Morse inequalities is presented
in a self-contained way. Although the material is totally independent of
the context of this book, we introduce Witten's idea because the proof is
so beautiful and surprising; moreover, it is a good example of the interplay
between analysis and topology.

This book is not intended to be complete, either as a systematic study
of Morse theory or as the presentation of many applications. We do not
deal with Conley theory [Conl|, stratified Morse theory, and the beautiful
applications in the study of closed geodesics. (For an overview of the liter-
ature, the reader is referred to the book by Khngenberg [Kli1]) as well as
to the study of gauge theory [AtB1].

w
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CHAPTER I -

Infinite Dimensional Morse Theory

The basic results in Morse theory are the Morse inequalities and the Morse
handle body theorem. They are established on the Banach Finsler mani-
folds or on the Hilbert Riemannian manifolds in Section 4. The tool in this
study is the deformation theorem, which is introduced in Section 3. Some
preliminaries on algebraic topology and on infinite dimensional manifolds
are reviewed in Sections 1 and 2 respectively. Readers who are familiar with
the background material may skip over these two sections. Gromoll-Meyer
theory on isolated critical points plays an important role in the applications
of Morse theory because the nondegeneracy assumption in the handle body
theorem might not hold for concrete problems. Section 5 is devoted to in-
troducing Gromoll-Meyer theory systematically and examines the splitting
lemma, the homotopy invariance theorem, the shifting theorem, and the
Marino Prodi approximation theorem. The rest of the chapter consists of
the extensions of the basic results of Morse theory in different directions:
in Section 6.1, to the extension to manifolds with boundaries as well as
to the functions satisfying certain boundary value conditions, in Section
6.2, to the extension from manifolds to the locally convex closed subsets;
and, in Section 7, to functions with symmetry under a compact Lie group
action.

1. A Review of Algebraic Topology

The idea of algebraic topology is to assign algebraic data to topologi-
cal spaces so that topological problems may be translated into algebraic
ones. The singular homology group is an example of algebraic data. It is
constructed of the maps of geometric simplexes into arbitrary topological
spaces so that it is applicable to infinite dimensional problems.

Let X be a topological space, and let

Ay = ix,-e,-p\,-zo, doai=1

i=0
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be the standard g-simplex, ¢ =0, 1,... where

€0=(0,0,...0,...)
ey =(1,0,...0,...)

eq =(0,0,... 1,...)

are vectors in R*.
A singular g-simplex is defined as a continuous map ¢ : A; — X. Also,

let > o denote the set of all singular g-simplexes.

Given an Abelian group G, we define the formal linear combinations:
oc=>2.9i0i, gi €G, og; € Zq. These sums are called singular g-chains.
The set of all singular g-chains is denoted by Cy(X, G).

Suppose that X, X’ are two topological spaces, and that

f: X—X
is continuous, then
o= > gioi — Y g:if(oy)

is a reduced homomorphism: C¢(X,G) — Cu(X', G).
For each o € 3, we define the boundary operator

q
. j=0

where o) = (,0[9661, oy €j,...,eq], €0, €1,...,€j,...,eq] denotes the g—1

simplex generated by the vectors eg,ey,...,e, except e;,J =0,1,...,q.

Then we extend the operator 9 linearly onto Cy(X, G), i.e.,

azgia'i = Zgiaai-

It is not difficult to verify:
(1) 0: Co(X.G) — Cy=1(X,G) is a homomorphism, ¢ =1,2,....
(2) 8%c=08c =0V c € Cy(X,G).
A different boundary opertor 8% can be defined on 0-chains as follows:

o* Zgio'i = Zgi Vo; € Co(X,G), Vi

The relation
%9 =0
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also holds.

Suppose that (X,Y) is a pair of topological spaces, with ¥ C X (being
a subspace of X). We call (X,Y’) a topological pair.

For two topological pairs (X,Y) and (X’,Y”’), we say that a map f :
(X,Y) — (X"Y') is continuous if f : X — X’ is continuous with
f(Yycv’.

Two maps f,g : (X,Y) — (X',Y’) are called homotopic if 3 F :
[0,1] x X — X', which is continuous and satisfies

F(O"):f’ F(l»'):"g’

and
F:[0,]]xY —Y".

Let (X,Y) be a topological pair, since
0:Cy(X,G) — Cy1(X,G)

implies

8.: Cy(Y,G) — Co_i(Y, G).

The boundary operator induces a homomorphism & which makes the dia-
gram
Ce(X,G) — Cq(X’ G)/CQ(Y, G)
2] 3]
C,q—l (X» G) — C -1 (X9 G)/CQLY’ G)

commutative. Clearly 88 = 0. We call
Ca(X,Y,G) = Cy(X, G)/C,(Y, G)

the singular g-relative chain module. Then we define

Z4(X,Y,G) = ker(0), the singular g-relative closed chain module,

B,(X.,Y,G) = Im(d), the singular g-relative boundary module, and

Ho(X,Y,G) = Z4(X,Y,G)/By(X,Y,G), the singular g-relative ho-
mology module. The rank of Hy(X,Y,G) is called the singular g-Betti
number.

In the case where Y = 0, we write Hyo(X,Y,G) = Hy(X,G). For ¢ =0,
H¥(X.G) is defined as the quotient of ker(6#) by Im(9), and for ¢ > 0,
let H¥(X,G) = Hq(X,G). We call H?(X,G) the g-reduced homology
module. The 0-reduced relative homology module Hf (X,Y,G) is defined
as Ho(X,Y,G)if Y # 0 and H#(X) if Y = 0. The basic properties of
singular homology modules are summarized as follows. Their proofs can
be found in the book of M. J. Greenberg [Gr 1].
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1. Suppose that f: (X,Y) — (X',Y’) is continuous, then there is a
reduced homomorphism
fo: Ho(X,Y;G) = Ho (X', Y';G) VY q.
(a) If f =1id, then f. =id;

(b) Ifg: (X, Y)— (X', Y'’) is another continuous map, then the
reduced homomorphism g, satisfies

(9f)e = g4 f0.
(c) 8f. = f.0.

2. Homotopy invariance: If f,g : (X,Y) — (X', Y’) are homotopic,
then f, = g..

Two topological pairs (X,Y) and (X', Y”) are called homotopically equiv-
alent if there exist continuous maps

¢: (X,Y) — (X.Y),
v (X Y) — (X.Y),

satisfying :
’L/)O(ﬁ: id(X,Y)7 @O'l,()g id(x:'yf).

Thus, if (X,Y) and (X’,Y”) are homotopically equivalent, then
H (X, Y.G)=2 H(X'\Y',G) Vaq.

We say (X’,Y”) is a deformation retract of (X, Y)if X' C X, Y' CY, and
if3n:[0,1] x X — X satisfying

n(0.-) = idx, n(1,X) c X', n(1,Y) C Y,
n(t.Y) C Y and n(t, )|x = idxs, Vt €[0,1].
Thus, if (X',Y’) is a deformation retract of (X,Y’), then
H (X" Y',G) = Hy(X,Y,G).

3. Ezcision: If U C X satisfies U C int(Y), then
Hy(X\U,Y\U,G) = H(X,Y,G).

4. Ezactness: If Z C Y C X are three topological spaces, and we define
the injections i : (Y,Z) — (X.Z), and j : (X.Z) — (X,Y), then we
have the following exact sequence:

= H,(Y,2,G) & H (X, 2,G) & H)(X,Y,G)
S H, (Y Z.G) = - .
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In partlcular, since Hy(X, G) = Hy(X,0,G), we have

= Hy(Y,G) & Hy(X,G) 2 Hy(X,Y,G)
2 Q"‘l(Yv G) -

The same exact sequence also holds for reduced homology modules.

5. If X consists of a fé,mily of path-connected components { X}, then
Hy(X,Y;G) =&Y Hy(Xe, Xk NY;G) Vg

6. Hy(X,X;G) 20, VYq.

7. Ho(X,G) is a free group on as many generators as there are path
components of X.

IfY #0,Y C X, and X is path-connected, then

Ho(X.Y:G) =0.

8. Kiinneth formula: Let X, and X, be subspaces of the topological
space X. Denote 7, : X, — X as the injection, v = 1, 2.

(X1, X,) is said to be an excisive couple of subspaces if the inclusion
chain map

Cq(le G) + CQ(X% G) — CQ(XI U X2’ G)

induces an isomorphism of homology.

For given topological pairs (X,Y), (X’,Y’), we define their product
(X,Y) x (X',Y’') to be the pair (X x X', X xY' UY x X').

If G is a field, and if {X x Y',Y x X'} is an excisive couple in X x X7,
then the cross product is an 1somorphlsm

H(X,Y;G) Q@ H (X', Y;G) 2 H.((X,Y) x (X', Y'); G),
ie.,
H(XxX XxY UY x X';G) @H X,Y;G)H,p (X', Y, G),

p=0

Vg=0,12,....
In the case where G = a field Q,

rank Ho(X,Y;Q) = dim Hy(X,Y;Q),
we write

X(X.YiQ) = ¥ (-1) 1)? dim Hy(X,Y: Q)

q—O S



6 Infinite Dimensional Morse Theory

and call it the Euler characteristic of (X,Y).
The following homology groups are often used.

0 g#mn,wheng,n>1

(1) H(S".G)=<{ G gq=n2>landg=0,n21,
G? g=n=0.
: 0 g#n,
n -1 ~
(2) Hy(B™, 8" ,G)_{G 1=

where B™ is the n-ball, and S*~! = §B™.

G 0<q<n,

@ Hq(:f"‘,m%{o o

where T™ = S! x --- x S! is the n-torus.

0 g>n

where P™ is the real n-projective space.

0 g¢>2norgodd,

(O) Hq(CP ,G) = { G g even such that 0 < g < 2n,

where CP™ is the complex n-projective space, and G = Q, the rational
field, or Z. )

Now we turn our study to singular cohomology. The singular g-cochain
is defined to be the homomorphism ¢ : Co(X,G) — G :

[01+ 2, ¢] = [01,¢] + (02, ], Y 01,02 € Co(X, G),
[9-0,c]=g-lo.c]Vge G, ¥YoeC(X,G).

The set of all singular g-cochains Hom(C, (X, G), G) is denoted by C¥(X, G).
C%X,G) is a module:
lo,c1+col =[o,c1] + {o,c2] Vey, 00 € CUX,G), Vo € Cy(X,G),
[o,9-cl=g-lo.c], Vg€ G, Yo € CX,G), ¥ceCUX,G).
Thus the duality [, ] is a bilinear form on C,(X, G) x C1(X, G).

The dual operator of the boundary operator § with respect to [, | is
called the coboundary operator and is denoted by &:

(00,c] = [0,6c] Vo € Co(X,G), Yece CTYX,G).
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Hence, § : C?7~}(X,G) — C9(X,G) is a homomorphism, and 6% = 0
implies
82c=0Vce CIUX,G).

Singular cohomology is defined as follows: For a topological pair (X, Y),
let

CY(X,Y;G) = Hom(C,(X,G)/Cq(Y,G),G),

‘and let _ . o
5: C7TU(X,Y) —CUX,Y)

be the dual operator of the boundary operator 8 : C,(X,Y;G) —
Cy-1(X,Y; G). Then define

HY(X,Y;G) = ker(3)/Im (3).

It is easily seen that C°(X,Y; G) is isomorphic to

CUX,Y;G)={ce CUX,G)||o,c]=0 VaoelyY,G)}.
The isomorphism is realized by the dual homomorphism
P*: TUX,Y;G) — C'(X,G)
of the homomorphism
P: Cy(X,G) — Co(X,Y;G).
Therefore

c € CUX,G)|lo,c] =0V o € By(X,Y;G)},

Z9(X,Y;G) := ker(é
5 c€ CUX,G)llo,c] =0V 0o € Zo(X,Y;G)}.

BY(X,Y;G) := Im(

)=A{
)={
In general, we have a canonical homomorphism:

a: HUX,Y;G) — H(X,Y;G)".

In the case where G is a field, « is surjective.

The properties of cohomology are very similar to those of homology. The
important difference is as follows: Singular homology is a covariant functor
of topological pairs, but singular cohomology is a contravariant functor.

(1 If f: (X,Y) — (X',Y’) is continuous, then
f*: HY(X",Y',G) — H*(X,Y;G)

We have
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(a) If f =id, then fr=id. :
by Ifg: XY)— (X”,Y") is continuous, then (gf)* =
Fe
(c) 6 = [fo.
2 I, f.g: (X.Y) — (X',Y') are homotopic, then f* = g*. If
(X.Y) ~ (X', Y"), then H*(X,Y;G) = H*(X',Y; G).
(3') (Excision) HY(X\U,Y\U;G) = H*(X.Y;G), it U C int(Y).
(4) (Exactness) If ZCY C X, then the sequence

e HY(Y,2;G) & H(X,Z;G) & HI(X,Y;G) & HITH Y, Z;G) = -

is exact.
5y H({p} G)—{G =9
( p) - 0 q#o.

(6") If (XxY', Y x X") is an excisive couple in X x X', and H*(X,Y;G)
is of finite type, i.e., H9(X,Y;G) is finitely generated for each g,
and G is a field, then

H*(X,Y;G)® H*(X',Y';G) = H (X, Y) x (X", Y'); G).

We can define a product on singular cohomolgy groups such that the
singular cohomology groups become graded algebras.

We denote C*(X,G) = 82,C%X,G), and define a cup product as
follows: ¥ c € CP(X,G), ¥de CYX,G), Vo € Cp+q(X,G), we consider
affine maps

‘ /\p N Ap _— Ap+q
pa: Dg — Bpq

to be
Ap = (€0,---+€p), Pq = (€ps€ptis---: Ep+q)-
and then define
[o.cUd) = [oAp,c} - [opg, d]-
The cup product is bilinear, associative, and possesses the unit, i.e., the

0-cochain 1, which is defined by [z, 1] =eVz € X.
We may easily prove that

§(cUd) =6cUd+(~1)cUsd VceCP(X,G), ¥deC(X.G).

Hence, Z*(X,G) is a subalgebra of C*(X, G) and B*(X,G) is an ideal
of Z*(X,G). The cup product U is well defined on H*(X,G), and makes
it a graded algebra. Furthermore, if f : X — Y is continuous, then
f*: H*(Y) — H*(X) is a ring homomorphism: f*(cud) = frc)u f(d),
which satisfies f*§ = 6f*. ‘



1. A Review of Algebraic Topology 9

The cap product is defined as the dual operator of the cup product, i.e.,

Vece CP(X), Vde ClUX), Vo & Cpiqg(X),
[ened]l =[o,cud],

or, equivalently, _
ocNc=[oA,clopg.

The boundary operators relate the cap product as follows:
(e Ne) = (—~1)?[(8g) Nc — o Néc].

Vo € Cpyq(X), Yc € CP(X).
If f: X — Y is continuous, then we have

folonfre)l = fulo)Ne.
Since V 0 € Zp+q(X), V ¢ € ZP(X), we have 0 Nc € Zy(X), and

Y ¢ € Bpq(X), V€ ZP(X), we have o N c € By(X), the cap product is
well-defined on homology groups: .

N Hyprg(X) x HP(X) — H,(X).

The definition of cup product and cap product can be extended to topo-
logical pairs. In fact, we have

N: Hpro(X,Y;G) x HP(X,Y; G) — Hy(X,G)
Nt Hpro(X, Y3 G) x HP(X,G) — Hy(X,Y;G),

and
U: HP(X,Y,;G) x HI(X,Y3:G) — HPM (X, YU Y2 G),

if (¥7,Y5) is an excisive couple in X.
The cup length of a topological space X is defined as

CL(X)=max{l € Z.| 3 c1,....a € H(X,G),
dim(c;) > 0,i=1,...,l, such thatc; U---Uc; # 0}.

This is a topological invariant which is very useful in critical point theory.
More generally, we define the cup length for a topological pair (X,Y’).

CL(X.Y)=max{le Z4 |3co € H'(X.Y), 3ci,c2,..., a0 € H(X),

with dim(e;) > 0, i = 1,2,...,{, such that coUcy U---Ucr # 0}.
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In the case where Y = 0, we just take co € H%(X). These two definitions

are the same.
We may characterize CL(X,Y’) by its dual.

Definition 1.1. Let (X,Y) be a pair of topological spaces and Y C X.
For two nontrivial singular homology classes [o1], [02] € H.(X,Y), we say
that [o1] is subordinate to [o9], denoted by [o1] < [o2], if there exists
¢ € H*(X), with dimc¢ > 0 such that

(1] =[] Ne,

where N is the cap product.
Let us define

L(X,Y) = max {l € Z, | 3 nontrivial classes [0;] € H.(X,Y),
1 <7 <, such that [o] < [o2] < --- < [01]}.

Theorem 1.1. L(X,Y)=CL(X,Y)+ 1.

Proof. For L(X,Y) = 1 + 1 if and only if 3 nontrivial classes [op] <
[o1] < -+ < [o] in H(X,Y), e, 3¢ € H*(X), dim ¢; > 0,1<i < [,
such that

[0’,;+1] = [0’{] Nc¢, 1= 1 2 l

However, 3 ¢g € H*(X,Y) such that [[oo], co] # 0 is equlvalent to the
nontriviality of [cg]. And since

o, aUeU---Ueg] = [[or-1], 11 Uiz U~ - - U g
- ="'=[[00]a00]’

w L{X,Y)=1+1if and only if CL(X,Y) = L. a

The homotopy group is another important topological invariant. Let us
recall some basic definitions and properties in homotopy theory.

Let X be a topological space and p be a point in X. We call (X,p) a
pointed space with base point p. A topological pair (X,Y), in which Y
is a subspace of X that contains p, is called a pointed pair (often written
(X.Y,p)).

A map f from pomted space (X, p) to a pointed space (X’,p/), f: X —

!, with f(p) = p/, is called a pointed map. Similarly, we define a pointed
pair map, ponnted homotopy, pointed pair homotopy, and so forth.

Let I™ denote the n-dimensional unit cube, n > 1, I*=! C I™ the bottom
space (t = (t1,t2,... ,tn) € ", if0<t; <1,i=1,2,...,n,and t € I™"!



