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FoREWORD

In this book Dr. Sebastian describes the current state of the art of what are now
broadly described as microwave dielectric materials. The history of these materi-
als stretches back to the late 19th century. In 1897 Lord Rayleigh described a
dielectric waveguide and in 1909 Debye described dielectric spheres. It was not
until 1939 that Richtmyer coined the term “Dielectric Resonator” when he
suggested that a dielectric ring could confine high-frequency electromagnetic
waves and hence form a resonator. Richtmyer also realized that an open reso-
nator would resonate into free space and three quarters of a century later these
ideas have spawned a multibillion dielectric antenna industry and dielectric
resonator industry. Astonishingly, our lives have been completely transformed
by the science of a handful of people.

Today, microwave dielectric materials are all-pervasive. Several people buy a
new mobile phone every second of every day of every year. This book takes us to
the heart of the science and it takes us through the science in a comprehensive
manner. We learn about the key properties of relative permittivity, of dielectric
loss and of temperature coefficients and we learn how the microstructure and
chemistry of the dielectric is crucial in determining the key properties. We learn
about the beginnings of the now huge dielectric resonator industry in the
pioneering work of Hank O’Brian and Taki Negas on barium titanate composi-
tions. Historically the book is faithful and we next learn about the zirconium
titanates, finally ending up with the newer perovskites.

The amazingly forgiving properties of the perovskites, in terms of substitu-
tion, are described and the ability of these substitutions to affect all the key
properties — the temperature coefficient, the dielectric loss and the relative
dielectric constant. The book describes how one can tailor the dielectric proper-
ties of materials by judicious choice of substituent or dopant.

In the final chapters we see interesting information of specific materials such
as titania and alumina as well as low sintering temperature materials that can be
cofired with electrodes such as silver. Included in an appendix is the most
comprehensive list of microwave dielectric materials, along with their key
properties, that exists.

This book will serve a wide range of communities — from University students
and tutors to industrial laboratories. The volume of information available is
prodigious as a rapid glance of the contents indicates and this in combination
with a truly comprehensive list of over a thousand references makes this book a
most valuable source of information. Dr. Sebastian has worked in the area of
microwave dielectrics for many years and has published extensively in this area.
This book is a considerable achievement.

Protessor Neil McN Alford FREng
Imperial College London
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CHAPTER ONE

INTRODUCTION

Microwave dielectric materials play a key role in global society with a wide range of
applications from terrestrial and satellite communication including software radio, GPS,
and DBS TV to environmental monitoring via satellites. In order to meet the specifica-
tions of the current and future systems, improved or new microwave components based
on dedicated dielectric materials and new designs are required. The recent progress in
microwave telecommunication, satellite broadcasting and intelligent transport systems
(ITS) has resulted in an increasing demand for dielectric resonators (DRs), which are low
loss ceramic pucks used mainly in wireless communication devices. With the recent
revolution in mobile phone and satellite communication systems using microwaves as
the carrier, the research and development in the field of device miniaturization has been
one of the biggest challenges in contemporary Materials Science. This revolution is
apparent on a daily basis in the ever increasing number of cell phone users. The recent
advances in materials development has led to these revolutionary changes in wireless
communication technology. Dielectric oxide ceramics have revolutionized the micro-
wave wireless communication industry by reducing the size and cost of filter, oscillator
and antenna components in applications ranging from cellular phones to global position-
ing systems. Wireless communication technology demands materials which have their
own specialized requirements and functions. The importance of miniaturization cannot
be overemphasized in any hand-held communication application and can be seen in the
dramatic decrease in the size and weight of devices such as cell phones in recent years.
This constant need for miniaturization provides a continuing driving force for the
discovery and development of increasingly sophisticated materials to perform the same
or improved function with decreased size and weight.

A DR is an electromagnetic component that exhibits resonance with useful properties
for a narrow range of frequencies. The resonance is similar to that of a circular hollow
metallic waveguide except for the boundary being defined by a large change in permit-
tivity rather than by a conductor. Dielectric resonators generally consist of a puck of
ceramic that has a high permittivity and a low dissipation factor. The resonant frequency
is determined by the overall physical dimensions of the puck and the permittivity of the
material and its immediate surroundings. The key properties required for a DR are high
quality factor (Q), high relative permittivity (¢,) and near zero temperature coefficient of
resonant frequency (79). An optimal DR that satisfies these three properties simulta-
neously is difficult to achieve in a particular material.

In the early microwave systems, bulk metallic cavities were used as resonators, but were
huge and not integrated with microwave integrated circuits (MICs). On the other hand,
stripline resonators have a poor quality factor and poor temperature stability resulting in
the instability of the circuit. Hence the importance of DRs, which are easily integrated
with MICs with low loss and with thermally stable frequency, especially at mm wave-
lengths. Most of the microwave-based device systems are located in the frequency range

Dielectric Materials for Wireless Communications © 2008 Elsevier Ltd.
ISBN-13: 978-0-08-045330-9 All rights reserved.
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Figure 1.1 Microwave spectrum and applications.

300 MHz-300 GHz as shown in Figure 1.1. Technological improvements in DRs have
contributed to considerable advancements in modern wireless communications. Ceramic
DRs have the advantage of being more miniaturized as compared to traditional microwave
cavities, and have a significantly higher quality factor. DRs have replaced cavity resonators
in most microwave and millimeter-wave applications for reasons of cost, dimension, mass,
stability, efficiency, tenability, ruggedness and ease of use. In addition, the temperature
variation of the resonant frequency of DRs can be engineered to a desired value to meet
circuit designer’s requirements. Functioning as important components in communication
circuits, DRs can create and filter frequencies in oscillators, amplifiers and tuners. In order
to respond to the requirement for increased channel capacity in ground-based cellular and
satellite communications, new devices with superior performance must be developed. The
system performance is closely related to material properties. In microwave communica-
tions, DR filters are used to discriminate between wanted and unwanted signal frequencies
from the transmitted and received signals. The desired frequency is extracted and detected
to maintain a strong signal-to-noise ratio. For clarity, it is also critical that the wanted signal
frequencies are not affected by seasonal temperature changes.

The low permittivity ceramics are used for millimeter-wave communication and also as
substrates for microwave integrated circuits. The medium &, ceramics with permittivity in
the range 2550 are used for satellite communications and in cell phone base stations. The
high €, materials are used in mobile phones, where miniaturization of the device is very
important. For millimeter-wave and substrate application, a temperature-stable low
permittivity and high Q (low loss) materials are required for high speed signal transmission
with minimum attenuation.

The term “dielectric resonator” first appeared in 1939, when Richtmeyer of Stanford
University showed that a suitably shaped dielectric piece can function as a microwave
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resonator [1]. However, it took more than 20 years to generate further interest on DRs
and to test Richtmeyer’s prediction experimentally. In 1953, Schlicke [2] reported on
super high permittivity materials (~1000 or more) and their applications as capacitors at
relatively low RF frequencies. In the early 1960s, Okaya and Barash from Columbia
University rediscovered DRs while working on rutile single crystals [3, 4]. Okaya and
Barash [3, 4] measured the permittivity and Q of TiO; single crystals at room tempera-
ture down to 50K in the microwave frequency range, using the commensurate trans-
mission line technique [4]. Later several authors developed methods for measuring the €,
quality factor (Q) and 7¢ of DRs. These methods are discussed in Chapter 2. In the early
1960s, Cohen and his co-workers [5] from Rantec Corporation performed the first
extensive theoretical and experimental evolution of DR. Rutile ceramics were used for
the experiments that had an isotropic permittivity of about 100. The TiO, has a poor
(4450 ppm/°C) stability of resonant frequency that prevented its commercial exploita-
tion. The first microwave filter using TiO, ceramics was proposed by Cohen in 1968
[6, 7]. But this filter was not useful for practical applications because of its high 7¢ A real
breakthrough in DR ceramic technology occurred in the early 1970s, when the first
temperature-stable, low loss barium tetratitanate (BaTi4O0) ceramics were developed by
Masse et al. [8]. Later, barium nanotitanate (Ba,TigO50) with improved performance was
reported by Bell Laboratories [9]. The next breakthrough came from Japan when Murata
Manufacturing Company produced (Zr,Sn)TiOy ceramics [10, 11]. They offered adjus-
table compositions so that temperature coefficients could be varied between +10 and
—10 ppm/°C. Later, in 1975, Wakino et al. realized the miniaturization of the DR -based
filters and oscillators [12]. Since then extensive theoretical and experimental work and
development of several DR materials has occurred. This early work resulted in the actual
use of DRs as microwave components. Commercial production of DRs started in the
early 1980s. The number of papers published and patents filed on the science and
technology of DRs increased considerably over the years as shown in Figure 1.2.
There are about 2300 low loss dielectric materials reported in the literature (see Appendix 2).
More than 5000 papers have been published and over 1000 patents were filed on DR
materials and devices. However, with only a limited number of useful dielectric ceramic
materials to choose from, the electronic industry is constantly searching for new materials
that are easily affordable for manufacture.
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Figure 1.2 (a) The number of papers published on dielectric resonator materials and
technology versus year of publishing (b) Number of patents filed versus year.
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Richtmeyer [1] in 1939 theoretically predicted that a piece of dielectric with regular
geometry and high €, can confine electromagnetic energy within itself, but still be prone
to energy loss due to radiation. It was found that through total multiple internal
reflections, a piece of high €, dielectric can confine microwave energy at a few discrete
frequencies, provided the energy is fed in the appropriate direction (see Figure 1.3). If
the transverse dimensions of the sample are comparable to the wavelength of the
microwave, then certain field distributions or modes will satisfy Maxwell’s equations
and boundary conditions. The reflection coeflicient approaches unity as &, approaches
infinity. In the microwave frequency range, free space wavelength (\.) is in centimeters
and hence the wavelength (),) inside the dielectric will be in millimeters only when the
value of €, is in the range 20-100. To get resonance, dimensions of the dielectric must be
of the same order (in millimeters). Still larger €, gives higher confinement of energy,
reduced radiation loss and better miniaturization. However, high &, will result in higher
dielectric losses because of inherent material properties. When exposed to free space, a
DR can also radiate microwave energy when it is fed suitably and can be used as efficient
radiators, called Dielectric Resonator Antennas (DRA). A DR with finite values of €,
prevents 100% reflection from the air/dielectric boundary and hence some field will
always exist in the vicinity of the dielectric. This is of great advantage since it enables one
to couple microwave power easily to the DR by matching the field pattern of the
coupling elements to that of the DR. Figure 1.4 (a) and (b) illustrates the variation of
electric and magnetic fields inside a dielectric (CasNb,TiO1» ceramic puck with €, = 48)
kept inside a copper cavity and simulated using a three-dimensional transmission line
matrix modeling method [13].

The size of a DR is considerably smaller than the size of an empty resonant cavity
operating at the same frequency, provided the relative permittivity (g,) of the material is

Figure 1.3 Schematic sketch of total multiple internal reflections in a high ¢, dielectric piece.
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E-field H-field
(a) (b)

Figure 1.4 Variation of (a) electric and (b) magnetic fields of TE;5resonance mode of a
Ca;Nb,TiO,; ceramic resonator with €, = 48 (after Ref. [13]) (see Color Plate section).

substantially higher than unity. Higher €, shrinks overall circuit/device size proportional
o (1/)"" For example, a circuit is compressed by a factor of six when a high Q
ceramic with €, = 36 is substituted for a high Q air cavity e, =1. The shape of a DR is
usually a solid cylinder but can also be tubular, spherical and parallelepiped. Figure 1.5
shows some of the low loss dielectric pucks made at the author’s laboratory. A commonly
used resonant mode of a cylindrical DR is TE 5. At resonant frequency, electromagnetic
fields inside a resonator store energy equally in electric and magnetic fields. When &, is
about 40, more than 95% of the stored electric energy and over 60% stored magnetic
energy are located within the dielectric cylinder. The remaining energy is distributed in
the air around the resonator, decaying rapidly with distance away from the resonator
boundary. The DR can be incorporated into a microwave network by exciting it with
microstrip transmission lines, as shown in Figure 1.6. The distance between the resonator
and the microstrip conductor determines the amount of coupling. In order to prevent
losses due to radiation, the entire device is usually enclosed in a metallic shielding box.

High Q minimizes circuit insertion losses and can be used as a highly selective circuit.
In addition, high Q suppresses the electrical noise in oscillator devices. Although several
manufacturers may produce similar components for the same application, there are subtle
differences in circuit design, construction and packaging. Since frequency drift of a
device is a consequence of the overall thermal expansion of its unique combination of

Figure 1.5 Picture of dielectric ceramic packs developed at the author’s laboratory (see
Color Plate section).
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Figure 1.6 Dielectric resonator mounted on a microstrip.
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Figure 1.7 The variation of the relative density, ¢,, Qfand 7¢of Ba(Smy;3Nby3) O3 ceramic
versus calcination temperature. Sintering temperature 1550°C for 2 hours (after Ref. [16]).



