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PREFACE *

1l

Perhaps on no branch of mathematics did Poincaré lay
his' stamp more indelibly than on topology. To him we owe
the basic notion of complex, the boundary relations and related
numerical ‘invariants, the first duality theorem. But Poincaré
quickly centered his efforts upon the classification of manifolds
and other questions, leaving the foundations in rather unstable
_ equilibrtam. It is largely to Veblen and Alexander that we
owe the remedy.for this state of affairs, and the present
improved situation.. A date marks the transition: 1922, when
there appeared Vebleh's excellent Cambridge Colloguium Lec:
. tures: Amalysis Situs, which’ has deservedly become the
standard work on the subject. The ground being thus well
prepared, new! developments came rapidly, and ‘it is with the
" new phases of. the subject that we shall be chiefly con-
cerned here.

Our central topic is the- -theory of manifolds for 'which
the first two chaptérs are the preparation. The manifolds
are of Alexander's combinatorial type. While more general
than the usual type their treitment is scarcely more difficult,
and in addition it has been possible to prove that they are
topologically invariant (van Kampen). They may be open
or closed complexes, and in the former case no boundary
conditions are imposed. The principal questions treated will
include .the general theory of the homology characters, their
' duality theorems, the intersection theory, the study of con-

tinuous transformations, their coincidences and fixed points,
; & 4 , ;
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the applications to analyttcal and algebraic varieties. In all
these direcfions we are taking up again questlons with which
we have dealt j jn recent papers (Transactions of the American

- Mathematical Society, 1926, 1927, Annals of Mathematics,

1927~ 1930), recasting and greatly extending our results. In
the duality theory it will be recalled that two unrelated
basic formulas, due to Poincaré and’'Alexander, were reduced
to a single formula for relative invariants. This work of uni-
fication is carried still further, with new results, giving con-
giderably greater reach to our formulas for coincidences and
fixed points.  We have succeeded, in fact, in extending them
to arbitrary:compact tnetné spaces, a fundamental result for
real analysis.

Regardmg the intersection theory, our ﬁrst treatmant was
Ibased on intersections of convex cells.  This'is an ekcellent
procedure: from the geometric standpoint and: for the appli-
cations. Howewer, for the basic invariance proofs a procedure
followed by Veblen-Weyl in the simplest case (isolated inter-
sections) 'is to be preferred and we have adopted it here.
Unfortunately, in their scheme the intersecting elements are
in a very special' mutnal relationship, which makes it awk-
ward in practise. . We have therefore introduced a third and
more general type of intersections, based on Brouwer’s looping
coefficients, ‘'which includes the other two types as special
cases, and thus acts as the unifying element.

Side by side with general topelogical invariance, one may
consider more strictly combinatorial invariance, or invariance
under subdivision of the cells of a complex. In its treatment
continuity should' play no part, afd its study constitutes com-
binatorial topology proper. While we have made a mild
effort to separate the two'theories, and to establish combi-
natorial invariance: wherever readily possible, we ' have

- taken as’ our' program the study of complexes and manifolds

from any point of view' whatever,” In’ short, in the ‘com-
binatorial theory, we have not adopted the. abstract and
postulational point of view of Dehn-Heegaard in their En-
cyklopidie article.’ We have taken configurations immersed
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in" some Euclidean number space, and made free use of the
elementary properties of the space as regards intersections
of its linear subspaces. These properties, and the elementary
properties of the rational number system, are all that we
assume when We deal with the combinatorial theory.

Much of the topological part proper has been put in the
seventh chapter, devoted to the infinite complex. It seems to
be just what is wanted' for the best treatment of that type
of question. Infinite inanifolds have already been studiéd by
Kerékjartd, la.rgely in’ the spirit of the classncal theory of
finite two dimensional ‘manifolds. We are giving here how-
ever for the ‘first time a general theory of infinite complexes
and manifolds with their applications to metric spaces. Closely
related recent contributions are the approximations to compact
metric spaces by finite comp%exes introduced by Alexandroff,
and the homology theory of these spaces due to Vietoris.

Perhaps the most novel feature of this book is the réle

played by the so-called ‘“relative” concepts. It appears that
almost all boundary relations and related homologies may be
replaced by others in which we omit everything that is not®
on a certain copfiguration 4, thus obtaining analogous relations
relative 4. For example it is advantageous to consider an open
segment as a relative,one-circuit, a plane polygonal region
‘as a relative manifold. This is entirely in line with the
“relative” concepts of point set theory as defined, say, by
Hausdorit. -
' When the relative concepts are systematlcally introduced,
'it is found ‘that 4 good part of the combinatorial theory of
Poincaré, Veblen, Alexander, also opr own results on con-
tinuous transformations, ete. have a greatly increased range
of application. As a minor, but highly interesting feature,
Brouwer’s classical results on the invariance of dimensionality
and regionality are found to be intimately tied up with the
invariance of the homelogy characters.

References are indicated by the author’s name, followad
by a number in 'square brackets which corresponds to the
bibliography at thevend. ~
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young memb ot the Princeton group. Dr. D. A, Flanders
was my colla orator in. connection with the first two chapters
and Dr. T W. Cohen with Ch. VII § 4. The fairly complete
bxbhography is largely due to the efforts.of Dr. A. B. Brown
who also caretnlly read the proofs, and in this conmection
made many valuable suggestions. = Messrs. W. W. Flexner, .
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especially with the first threb chapters, and in addition
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This second edition only differs from the first in the inser-
tion of a collection of errata from a large list provided by
Mr. R. S. Pieters. A couple of the corrections which it was
too difficult to insert in the text have been relegated to a
list of addenda at the end of the volume. These are marked
in the text by the superscript ®. The author wishes to expreés
his deep appreciation to Mr. Pieters for his list, and likewise
to the Chelsea Publishing Company for having undertaken
the arduous task of preparing this‘second edition.

UNvERSIDAD NACIONAL pE MEXICO
September, 1956 '
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INTRODUCTION

N

1. A rapid glance over the foundations of our subject,
besides its intfinsic valne, will <also provide an excellent
occasion for introducing various important concepts needed later.
These foundatmps rest upon the theory of abstract spaces
founded by Fréchet* [1]. On these questions the reader will -
consult with profit the interesting papers by Chittenden [1, 2].

2. Topology or Analysis Situs is usually defined as' the
stady of properties of spaces or thelr configurations invariant
under continuous transformatxons. " But what are spaces and
their confinuous transformatlons? ' « '

Whatever a space may be it is difficult to reconcile, it with
anything co'n(ormmg with ‘our “spatial” intuition unless it is
endowed with the followmg property, the most’ salient and
primitive, possessed by the ‘familiar i}ypes With each ‘point
- there goes a portion of the space in which it is imbedded.
This leads to the conception of an abstract space R as a set
of elements {x}, its poinis, together with an aggregate of
subsets {N } the nezqhbarhoods so0. chosen as to satlsfy

*The general hymbéﬁsm of the theory of'sets will'be used throughout
A 'set of elements, any one of which is a, is designated by {a} Let 4, B
be two sets. Then the set of all elements

onrmB =A+B= thesumoanndB
in A but not in B = 4 +~— B = the complement of B thh respect to A

" in 4 and also in B = 4 - B = the intersection of 4 and B.

ADB, or B&C 4 mean that B is a subset of 4> When B coincides
with 4 we write B = 4. Negat.xon of a relation is designated by dmwng
4 line through its symbol, as A q:B A+ B, ete,,

1 .

]

¥
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Axiom 1. Between the sets {x}, {V}, there exists a corre-
spondence such that to each z there corresponds ome or
more N’s, the neighborhoods N='of . Every N*Dz. =
- This is the first of four axioms due to Hausdorff. The

other three are given below and are of a more restrictive
nature.

3. We keep R ﬁxed for the present and consider certain
attributes of its subsets. It is ‘surprising how far it is possible
to go even on such a slender foundation as Axiom I. ;

Let A be a subset of R. The point z is an inner point
of A whenever there is an N“'C A which by Axiom I mphes
xC4.

A pointz is a boundary point of A if every N* mcludes
points of both 4 and of its complement R—-A.

The boundary F(A) of A is the sum of the boundary pomts
of A. 'The set A is open when F'(4) (C R'— A, closed when
FA)CA. An open set consists solely of inner point,s. A closed
set is the complement of an open set. .

It ACNCR, A closed, N open, then Nis called a ne:ghbor-
hood of A, and often designated by N4, R4, ete. \

The sum A} F(4) is called the closure ‘of A and is designated
by A. Tt is a set function defined for all subsets of R and
will pﬁay a particularly important part in the sequel.;

A set A is dense on R whenever there are points of Aon
every N. An equivalent definition is that A=R, Gk
The point z is a limet point of A_whenever 4 has points
on every N*—z.  The closure 4 = A+ all its limits

points.

The infinite sequence {x,.} is said to converge to tlu limit
whenever each N® contains all but a finite number of pomts
of the sequence.

Any given subset of R, say A may be turned into a spaée
by agreeing to choose as neighborhoods for A its inter-
sections N.4 with those of R. This convenmm will be
adbered to in the sequel. It is then possible to introduce
the sets open or closed on A4, etc.; these are the well known
relatwe concepts of point-set theory

)
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" 4. A trangformation T of a space R into another R" is the
assignment of a correspondence - between their points such
that to ‘every point =’ of R there corresponds at least one
point @’ == T.x of R'.. The transform T'-4 of a 'subset A
of R is the set of all points T.z for z(_ 4> The trans-
formation is: J : S A

“ Single-valued whenever ' ==T':z' is unique for every z.

One-to-one when it assigns also a unique z to every z/, thus
pairing off in & unique way the-points of R and R,

Continuous if' whenever the transform T-4A 'is relatively
‘open for 7'- R, then A4 is open for R ¥e
Homeomorphic when it is one-to-one and ‘continuous both
ways. , : A1 :

We have now all the elements needed for a formal

DEFINITION OF ToPoLoGY: It is the study of the properties:
of spaces that are preserved under homeomorphism.

Any property of a space ' which ' belongs to every homeo-
morph of R is said to be tgpologically invariant. A numerical
function attachéd ‘to R which has the same value for all its
homeomorphs is &' numerical topological invariant. ~As -an
example, wher R is a sphere the fact that any simple closed
curve on it decomposes it into two regions is topologically
invariant, the number fwo is a numerical topological invariant.

The concepts introduced in No.3 are topologically invariant:
Thus when R is homeomorphically transformed ‘into-R’, its
closed (open) sets, etc. go over into gimilar sets for R'.

5. Given an abstract set &, it may be possible to convert
it into a space by two distinct choices of subsets as neighbor-
hoods, say {N} and {N'}. We have thus two different spaces’
®, ®’, built up out of the same abstract set. of elements.
The two spaces are considered as"identical whenever the
identical point-to-point transformation between them is homeo-
morphic. This means that any subset A of R which is open

when the N's are the fundamental neighborhoods remains =

open when they are replaced by the N”’s and conversely.
The two sets of neighborhoods are then called equivalent.
The space R is not so much characterized by a single ag-
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gregate ‘of neighborhoods as by a wﬂple class of eqmvalent
sets of them. - :

Since identical spaces are homeomorphic the co pts, in-
troduced ‘in No. 8 are unchanged when a set of nelghborhoods
is replaced by an equivalent set. From the very general {ype
of space consideted so far we proceed to what: might be
termed ‘““working spaces” by mposmg restrictive axioms upon+
the nexghborhoods. The set in widest use today goes back
to Hausdorff [1] and characterizes what we shall call a Haus-
dorff space. It consists of Axiom I plus the following three:

Axiom II. It N, N’ are any two neighborhoods of x, there
exists a third.neighborhood of 2, N (C”N-N'.

Azxiom 1L, . If the point y (C N®, there is an N¥(_ N~=,

- Azxiom IV, If 24y there exist NZ, N¥ without common
points.,

Among the Hausdorft spaces are included the usual simple
types: projective, Euclidean, function; n-spaces, with sim-
. plexes (generalized: triangles) ;a8 the neighborhoods.

A necessary and sufficient condition for the equivalence of
two coincident Hausdorff spaces R, R’, defined by two distinct
sets of neighborhoods {N}, {N '} is that every N* carry an
N'” and conversely. . 3

6. A Hausdorff space ‘.'R is:

. Regular whenever Axiom ITI may be replaced by the stronger
condition: When 'y (" N%, there is an Nv(_ N=, .

. Separable (Fréchet) whenever it is identical with a space
,whose set of neighborhoods is enumerable.

Compact (Fréchet) whenever every infinite subset of R has
a limit point 'on R.

An important. consequence of separablhty is the presence
on R of an enumerable dense subset:  For if {N'} is the
enumerable set of neighborhoods; we can take -a: ppint P?
on N and the ' sequence {P?)is dense.on R. g,

The space whose points are all the real numbers with {¥}
as the intervals whose end points are rafienal, is sepdrable
but not compact since the set of all mtegers has no limit
pomt {02 : GgeM 1o b
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7. The definition of>a Spa&a by means: of neighborhoods is,
so to speak, purely qualitative. However, one: of the most -
important properties of the more common spaces is that they
can serve as a basis for making measurements, that a metric
can be affixed to them. If the notion of neighborhood deserves
A loglcally the first place, nevertheless in all applications of
- mathematics the existence of a metric is the essential element.
. H'we take the metric as the basic factor the natural definition
of a space R'assumes the following form: It is an abstract
set ‘of elements, its points, 'such that to'their pairs x, ¢ there *
. may be attached 'a distance ‘function, d(x;y), or real furc-
./~ tion having the following properties of Euclidean distances: .
I d,y):= 0 when and only when z=y.
1L For any three pomts z, y, z of R the triangle inequality
holds; i e.
dly, Z) d(x,y)+d(x, 2)..

From these two propertles one may deduce, as observed
by Lindenbaum [1], the other two usually .ascribed fo the
distance: T g L '

1. d(x, y) = 0.

; It is. obtained, by ma.kmg z 5=y .in II and takmg mto
\account ) PO : : y

IV. d(z, v} = d(y, ). AT ) ©

Making 2z = z in II we have d(y, z2) < d (x, Y- Sumlarly
i (x, y) < d(y, z), from whick: IV follows.

The distance d(A B) between two sets 4, BCR, is the
greatest lower bound of d(z, g) forx(_ A, yCB The diameter
of 4, d(4), is the least upper bound of d(z, y) for z, y(CA.
. By spheroid. of center.A.and.radius ¢, © (4; ¢); we understand
the set of all points = such that d(4; )< e,

The spheroids: © (i, @) whose centers are the points x of R
constitule a set” of neighborhoods which turn R into a regular
Hausdorff space. The verification is instantaneous. The Haus-
dorff space thus defined is considered as identical with R, and
continues to be designated by R. A practical result of
importance is that on a meiric space the limit concept can be
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put in. the same form as in the familiar e, 8 procedure of
elementary: analysis. bortac i e tlas g 3 g
For a metric space separability is equivalent to the existence
of an enumerable dense subset: We have.seen (No.6), that such;
a set is' present .on ‘every separable space. On the. other
hand, R being metric, if A =={¥} is dense onit, the spheroids
S (n; 0m), 0m Tational, are enumerable and their set is equivalent.
to{S(z;0)}, zany point of R, ¢ arbitrary. Hence R is separable.

i The fundamental question that must be answered in order .
to bridge the two points of view: metric and gualitative, is. :
then: Under what conditions is a Hausdorff space metrisable
(susceptible of Liaying a distance fimetion.affixed.to it)? In
the light of the pr'eceding remarks it is largely answered for
all spaces that offer any interest by the following fundamental
theorem due to Urysohn [1, 2], with an important complement
_ regarding the condition “of regularity by Tychonoff [1]:

In order that a separable Hausdorff space be metrisable, it is
necessary and sufficient that it be regular.
" As & rapid Corollary (Urysohn):
In order that a compact Hausdorff space be metrisable it is
necessary and sufficient that it be separable. _
We' are: then in possession today of & strictly qualititive
characterization of metric spaces with an enumerable dense

subset (separable metric spaces). These spaces include the .
most general type to be considered in any connection what-
ever in the present work. The preceding sketch is a suf-
fivient: description ‘of their foundations to, cover all our needs.-

8. An important result obtained in recent years is the proof
by Alexandroff{10] that compact metric spaces can be inde-
finitely approximated by certain polyhedral configurations, the

‘complexes. The topological theory of complexes acquires thus
a fundamental importance; it is in ‘truth the necessary first
step in a general study of metric spaces. e g g

’
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