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PREFACE

After ten years of Java momentum, C++ remains a popular programming language widely
used in the industry and taught in academia. Java is ideal for developing GUI, Internet and
cross-platform applications, whereas C++ excels in system programming such as operating
systems and compilers. Java and C++ will co-exist and compliment each other.

There are many C++ texts. What distinguishes this book from others are the fundamentals-
first approach and the writing style. The fundamentals-first approach introduces fundamental
programming concepts on control statements, loops, functions, and arrays before introducing
object-oriented programming. The writing style of this book can be summarized in two
words: clear and concise. The concepts are clearly explained using simple, short, and stimu-
lating examples. The explanations are concisely presented with many figures and tables.

Versions

The book is available in two versions:
B The Brief Version (Chapters 1-14).
B The Comprehensive Version (Chapters 1-20).

The following diagram summarizes the contents in the comprehensive version:

Introduction to Prog ing vith C++, Comprehensive Version

Part 1 Fundamentals of Programming Chapter 12 File Input and Output
Chapter 1 Introduction to Computers, Programs,| | | Chapter 13 Operator Overloading

and C++ Chapter 14 Exception Handling
Chapter 2 Primitive Data Types and Operations
Chapier 3 Sclection Statements P“C:;)‘[Z‘;‘;’f;:;‘:;i
Chapter 4 Loops :
Chapter 5 Functions

Chapter 17 Trees, Heaps, and Priority Queues

m g Arrays 404 C-Srings g;ipler 18 Algorithm Efficiency and Sorting
8 IE s pter 19 STL Containers

Chapter Chapter 20 STL Algorithms
Part 2 Object-Oriented Programming

Chapter 9 Objects and Classes Appendixes

Chapter 10 More on Objects and Classes

Chapter 11 Inheritance and Polymorphism

l
i
1
i
i
1
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! Chapter 16 Linked Lists, Stacks, and Queues
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i
1
i
1
I
|
1
)
1
1

The Brief Version introduces fundamentals of programming, problem-solving, and object-
oriented programming. This version is suitable for a course on introduction to problem solv-
ing and object-oriented programming.

The Comprehensive Version contains all the chapters in the brief version. Additionally, it
covers data structures and advanced C++ programming.

Teaching Strategies

There are several strategies in teaching C++. This book adopts the fundamentals-first strategy,
proceeding at a steady pace through all the necessary and important basic concepts, then mov-
ing to object-oriented programming, and then to the use of the object-oriented approach to
build interesting applications with exception handling, /O, and data structures.

fundamentals-first

clear
concise

brief version

comprehensive version

fundamentals-first
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fundamental programming
techniques

using OOP effectively

object-early failed?
object-right
problem solving

practice

programmatic solution

object-oriented programming

teaching by example
learning by doing

From my own experience, confirmed by the experiences of many colleagues, we have
found that learning basic logic and fundamental programming techniques like loops and step-
wise refinement is essential for new programmers to succeed. Students who cannot write code
in procedural programming are not able to learn object-oriented programming. A good intro-
duction on primitive data types, control statements, functions, and arrays prepares students to
learn object-oriented programming.

The fundamentals-first approach reinforces object-oriented programming (OOP) by first
presenting the procedural solutions and then demonstrating how they can be improved using
the object-oriented approach. Students can learn when and how to apply OOP effectively.

Atevery SIGCSE (Computer Science Education) conference prior to 2005, the object-early
approach was trumpeted and the voice for the fundamentals-first approach was muted. This has
been changed when some former proponents of object-early began to air their frustrations and
declared that object-early failed. This book is fundamentals-first and object-right. OOP is
introduced just right in time after fundamental programming techniques are covered.

Programming isn’t just syntax, classes, or objects. It is really problem solving. Loops,
functions, and arrays are fundamental techniques for problem solving. From fundamental
programming techniques to object-oriented programming, there are many layers of abstrac-
tion. Classes are simply a layer of abstraction. Applying the concept of abstraction in the
design and implementation of software projects is the key to developing software. The over-
riding objective of this book, therefore, is to teach students to use many layers of abstraction
in solving problems and to see problems in small detail and in large scale. The examples and
exercises throughout this book center on problem solving and foster the concept of develop-
ing reusable components and using them to create practical projects.

Learning Strategies

A programming course is quite different from other courses. In a programming course, you
learn from examples, from practice, and from mistakes. You need to devote a lot of time to
writing programs, testing them, and fixing errors.

For first-time programmers, learning C++ is like learning any high-level programming lan-
guage. The fundamental point in leaming programming is to develop the critical skills of for-
mulating programmatic solutions for real problems and translating them into programs using
selection statements, loops, and functions.

Once you acquire the basic skills of writing programs using loops, functions, and arrays,
you can begin to learn object-oriented programming. You will learn how to develop object-
oriented software using class encapsulation and class inheritance.

Pedagogical Features
The philosophy of the Liang Series is teaching by example and learning by doing. Basic fea-
tures are explained by example so that you can learn by doing. This book uses the following
elements to get the most from the material:

B Objectives list what students should have learned from the chapter. This will help them to
determine whether they have met the objectives after completing the chapter.

B Introduction opens the discussion with a brief overview of what to expect from the
chapter.

B Examples, carefully chosen and presented in an easy-to-follow style, teach programming
concepts. This book uses many small, simple, and stimulating examples to demonstrate
important ideas.

® Chapter Summary reviews the important subjects that students should understand and
remember. It helps them to reinforce the key concepts they have learned in the chapter.
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B Optional Sections cover nonessential but valuable features. Instructors may choose to
include or skip an optional section or to cover it later. The section headers of optional sec-
tions are marked by % ;

B Review Questions are grouped by sections to help students track their progress and eval-
uate their learning.

B Programming Exercises are grouped by sections to provide students with opportunities to
apply on their own the new skills they have learned. The level of difficulty is rated easy (no
asterisk), moderate (*), hard (**), or challenging (***). The trick of learning programming
is practice, practice, and practice. To that end, this book provides a great many exercises.

B Interactive Self-Test lets students test their knowledge interactively online. The Self-Test
is accessible from the Companion Website. It provides more than one thousand multiple-
choice questions organized by sections in each chapter. The Instructor Resource Website
contains the quiz generator with additional multiple-choice questions.

m Notes, Tips, and Cautions are inserted throughout the text to offer valuable advice and
insight on important aspects of program development.

o
w Note

=" Provides additional information on the subject and reinforces important concepts.

e
h Teaches good programming style and practice.

-
& Caution
Helps students steer away from the pitfalls of programming errors.

Chapter Dependency

The following diagram shows the chapter dependency. Note that Chapter 8, “Recursion,”
Chapter 12, “File Input and Output,” and Chapter 13, “Operator Overloading,” can be covered

in flexible orders.
antmlJ: Brief Version

Coprs] o)
&

Chapter 10]  Chapter12]  Chapter 13

{ {
Chapter 16]  Chapter 18}

Chapter 17)
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C++ Development Tools

Youcanuseauxtediux,mhaﬂanﬂowstpadorWordPad,mamCHpmgrm,
and you can compile and run the programs from the command window. You also can use a C++
development tool, such as Visual C++, Dev-C++, and C++Builder. These tools support an inte-
grated development environment (IDE) for rapidly developing C++ programs. Editing, compil-
mghﬁm&aemﬁnganddewggingpommmhmwdm«nmphimlminmﬁm
Usingﬁliseﬁxﬁwlywﬂlgmﬂyhuemywmammingpm&xﬁvﬁy.Hawmm,
wmpik,mdnmmmnnusinngalCHmdDevCHisinmducethnpul.Dmﬂed
tutorials on Visual C++ and C++Builder are in the supplements on the Companion Website,

The programs in this book have been tested on Visual C++, C++Builder, and the GNU
C++ compiler.

Companion Website

The companion Website at www.prenhall.com/liang or www.cs.armstrong.edufliang/cpp con-
tains the following resources:

B Answers to review questions

Solutions to even-numbered programming exercises

Source code for the examples in the book

lntemctive. Self-Test (organized by sections for each chapter)
Supplements

Resource links

Errata

Supplements

The text covers the essential subjects. The supplements extend the text to introduce additional
topics that might be of interest to readers. The following supplements are available from the
Companion Website.

Suppl for Introduction to Prog g with C++
T
Part I General ! Part 111 Preprocessor
i
A Glossary ! A Preprocessor Directives
g Installing “&W“‘! W‘:’X’m‘“ - Part IV Advanced C++ Topics
:Conmmd’s Window ! A Multiple Inheritance
Codi Guideli 1 B Namespaces
e Style . C Operator Keywords
P:"‘JI;IZECJMSK P u 1 ! Part V Legacy Topics
5 ey wi ! A Redirecting Input/Qutput
?‘ mm et S G : B Using Command-Line Argument
D C++Builder Tutorial i € CgotoStatements
E Learning C++ Effectively with C++Builder |1 D € printf Statements

Instructor Resource Website:

The Instructor Resource Website accessible from www.prenhall.com/liang contains the follow-
ing resources:

B Microsoft PowerPoint slides with interactive buttons to view full-color, syntax-
highlighted source code and to run programs without leaving the slides.



& Sample exams. In general, each exam has four parts:

1. Multiple-choice questions or short-answer questions (most of these are different from
the questions in the self-test on the Companion Website)

2. Correct programming errors
3. Trace programs
4. Write programs

B Solutions to all the exercises. Students will have access to the solutions of even-numbered
exercises in the book’s Companion Website.

B Web-based quiz generator. (Instructors can choose chapters to generate quizzes from a
large database of more than 2000 questions.)

8 Online quiz. (Students can take the online quiz for each chapter, and a quiz report will be
sent to the instructor.)

Some readers have requested the materials from the Instructor Resource Website. Please
understand that these are for instructors only. Such requests will not be answered.

Preface vii
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