1]

42

% ®m #w s =& °

C++EFRRIT

(5_3ZhR)

A4 .

v
| 4
< COMPREHENSIVE
VERSION
Introduction to
Programming
with
-
-~
:b
s 3
-
% Y. Daniel Liang .
() PSR HRAS AT AT = KL KF
o T M ORR A

China Machine Press

2 R R B # &

++ EFIRiT

(ZR3ZhR)

Y. Daniel Liang
BTN T S92 A A

(%)

English reprint edition copyright © 2008 by Pearson Education Asia
Limited and China Machine Press.

Original English language title: Introduction to Programming with C++:
Comprehensive Version (ISBN 0-13-225445-X) by Y. Daniel Liang, Copyright © 2007.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education,
Inc., publishing as Prentice Hall.

For sale and distribution in the People’s Republic of China exclusively
(except Taiwan, Hong Kong SAR and Macau SAR).

AR EN iR i Pearson Education Asia Ltd 32AUHLME Tolk R+ 505
Hik. REHREBIFAT, AHUMERGRERISDBEBNE.

RFrhE NRILFESEN (ARfEEEE, B ITBR X EE
BHX) #ERT.

455} 1 W A Pearson Education (¥4 E HIRER) BOEP; thin%,
TrEENRHE.

WBILRE. RIS,
AP EEWE JERTRIARINESH

BN EIZS. BF: 01-2007-1830
EBERmE (CIP) ¥iE

C++EEFFI&T (FEChR) / (3€) # (Liang, Y. D.) 2. —Jb&: LT
A H R FE, 2008.5

4544 JE 3 : Introduction to Programming with C++: Comprehensive Version

(B HE R)
ISBN 978-7-111-23996-3

1.Co- O.#%.- I.CiEE-BFiXit—¥3x IV.TP312
o E R A B 355 CIPE a2 5 (2008) 250563635

UM Tolk AR A (et kX & 5 B k#5228 BBEC4AS 100037)
TStk BIRE
JestatAbhilk) BNl - e EILR RITR R AT
20084E5 H 45 11U 17 ENRI
145mm x 210mm -+ 20.75E15k
FrEd52 . ISBN 978-7-111-23996-3
ISBN 978-7-89482-647-3 (%)
EHr: 45.005C (Fftfest)

JLUA5, AR, BT, B, HAHRITHIALR
AW, (010) 68326294

PREFACE

After ten years of Java momentum, C++ remains a popular programming language widely
used in the industry and taught in academia. Java is ideal for developing GUI, Internet and
cross-platform applications, whereas C++ excels in system programming such as operating
systems and compilers. Java and C++ will co-exist and compliment each other.

There are many C++ texts. What distinguishes this book from others are the fundamentals-
first approach and the writing style. The fundamentals-first approach introduces fundamental
programming concepts on control statements, loops, functions, and arrays before introducing
object-oriented programming. The writing style of this book can be summarized in two
words: clear and concise. The concepts are clearly explained using simple, short, and stimu-
lating examples. The explanations are concisely presented with many figures and tables.

Versions

The book is available in two versions:
B The Brief Version (Chapters 1-14).
B The Comprehensive Version (Chapters 1-20).

The following diagram summarizes the contents in the comprehensive version:

Introduction to Prog ing vith C++, Comprehensive Version

Part 1 Fundamentals of Programming Chapter 12 File Input and Output
Chapter 1 Introduction to Computers, Programs,| | | Chapter 13 Operator Overloading

and C++ Chapter 14 Exception Handling
Chapter 2 Primitive Data Types and Operations
Chapier 3 Sclection Statements P“C:;)‘[Z‘;‘;’f;:;‘:;i
Chapter 4 Loops :
Chapter 5 Functions

Chapter 17 Trees, Heaps, and Priority Queues

m g Arrays 404 C-Srings g;ipler 18 Algorithm Efficiency and Sorting
8 IE s pter 19 STL Containers

Chapter Chapter 20 STL Algorithms
Part 2 Object-Oriented Programming

Chapter 9 Objects and Classes Appendixes

Chapter 10 More on Objects and Classes

Chapter 11 Inheritance and Polymorphism

l
i
1
i
i
1
3
! Chapter 16 Linked Lists, Stacks, and Queues
i
i
1
i
1
I
|
1
)
1
1

The Brief Version introduces fundamentals of programming, problem-solving, and object-
oriented programming. This version is suitable for a course on introduction to problem solv-
ing and object-oriented programming.

The Comprehensive Version contains all the chapters in the brief version. Additionally, it
covers data structures and advanced C++ programming.

Teaching Strategies

There are several strategies in teaching C++. This book adopts the fundamentals-first strategy,
proceeding at a steady pace through all the necessary and important basic concepts, then mov-
ing to object-oriented programming, and then to the use of the object-oriented approach to
build interesting applications with exception handling, /O, and data structures.

fundamentals-first

clear
concise

brief version

comprehensive version

fundamentals-first

iv Preface

fundamental programming
techniques

using OOP effectively

object-early failed?
object-right
problem solving

practice

programmatic solution

object-oriented programming

teaching by example
learning by doing

From my own experience, confirmed by the experiences of many colleagues, we have
found that learning basic logic and fundamental programming techniques like loops and step-
wise refinement is essential for new programmers to succeed. Students who cannot write code
in procedural programming are not able to learn object-oriented programming. A good intro-
duction on primitive data types, control statements, functions, and arrays prepares students to
learn object-oriented programming.

The fundamentals-first approach reinforces object-oriented programming (OOP) by first
presenting the procedural solutions and then demonstrating how they can be improved using
the object-oriented approach. Students can learn when and how to apply OOP effectively.

Atevery SIGCSE (Computer Science Education) conference prior to 2005, the object-early
approach was trumpeted and the voice for the fundamentals-first approach was muted. This has
been changed when some former proponents of object-early began to air their frustrations and
declared that object-early failed. This book is fundamentals-first and object-right. OOP is
introduced just right in time after fundamental programming techniques are covered.

Programming isn’t just syntax, classes, or objects. It is really problem solving. Loops,
functions, and arrays are fundamental techniques for problem solving. From fundamental
programming techniques to object-oriented programming, there are many layers of abstrac-
tion. Classes are simply a layer of abstraction. Applying the concept of abstraction in the
design and implementation of software projects is the key to developing software. The over-
riding objective of this book, therefore, is to teach students to use many layers of abstraction
in solving problems and to see problems in small detail and in large scale. The examples and
exercises throughout this book center on problem solving and foster the concept of develop-
ing reusable components and using them to create practical projects.

Learning Strategies

A programming course is quite different from other courses. In a programming course, you
learn from examples, from practice, and from mistakes. You need to devote a lot of time to
writing programs, testing them, and fixing errors.

For first-time programmers, learning C++ is like learning any high-level programming lan-
guage. The fundamental point in leaming programming is to develop the critical skills of for-
mulating programmatic solutions for real problems and translating them into programs using
selection statements, loops, and functions.

Once you acquire the basic skills of writing programs using loops, functions, and arrays,
you can begin to learn object-oriented programming. You will learn how to develop object-
oriented software using class encapsulation and class inheritance.

Pedagogical Features
The philosophy of the Liang Series is teaching by example and learning by doing. Basic fea-
tures are explained by example so that you can learn by doing. This book uses the following
elements to get the most from the material:

B Objectives list what students should have learned from the chapter. This will help them to
determine whether they have met the objectives after completing the chapter.

B Introduction opens the discussion with a brief overview of what to expect from the
chapter.

B Examples, carefully chosen and presented in an easy-to-follow style, teach programming
concepts. This book uses many small, simple, and stimulating examples to demonstrate
important ideas.

® Chapter Summary reviews the important subjects that students should understand and
remember. It helps them to reinforce the key concepts they have learned in the chapter.

Preface

B Optional Sections cover nonessential but valuable features. Instructors may choose to
include or skip an optional section or to cover it later. The section headers of optional sec-
tions are marked by % ;

B Review Questions are grouped by sections to help students track their progress and eval-
uate their learning.

B Programming Exercises are grouped by sections to provide students with opportunities to
apply on their own the new skills they have learned. The level of difficulty is rated easy (no
asterisk), moderate (*), hard (**), or challenging (***). The trick of learning programming
is practice, practice, and practice. To that end, this book provides a great many exercises.

B Interactive Self-Test lets students test their knowledge interactively online. The Self-Test
is accessible from the Companion Website. It provides more than one thousand multiple-
choice questions organized by sections in each chapter. The Instructor Resource Website
contains the quiz generator with additional multiple-choice questions.

m Notes, Tips, and Cautions are inserted throughout the text to offer valuable advice and
insight on important aspects of program development.

o
w Note

=" Provides additional information on the subject and reinforces important concepts.

e
h Teaches good programming style and practice.

-
& Caution
Helps students steer away from the pitfalls of programming errors.

Chapter Dependency

The following diagram shows the chapter dependency. Note that Chapter 8, “Recursion,”
Chapter 12, “File Input and Output,” and Chapter 13, “Operator Overloading,” can be covered

in flexible orders.
antmlJ: Brief Version

Coprs] o)
&

Chapter 10] Chapter12] Chapter 13

{ {
Chapter 16] Chapter 18}

Chapter 17)

vi

Preface

C++ Development Tools

Youcanuseauxtediux,mhaﬂanﬂowstpadorWordPad,mamCHpmgrm,
and you can compile and run the programs from the command window. You also can use a C++
development tool, such as Visual C++, Dev-C++, and C++Builder. These tools support an inte-
grated development environment (IDE) for rapidly developing C++ programs. Editing, compil-
mghﬁm&aemﬁnganddewggingpommmhmwdm«nmphimlminmﬁm
Usingﬁliseﬁxﬁwlywﬂlgmﬂyhuemywmammingpm&xﬁvﬁy.Hawmm,
wmpik,mdnmmmnnusinngalCHmdDevCHisinmducethnpul.Dmﬂed
tutorials on Visual C++ and C++Builder are in the supplements on the Companion Website,

The programs in this book have been tested on Visual C++, C++Builder, and the GNU
C++ compiler.

Companion Website

The companion Website at www.prenhall.com/liang or www.cs.armstrong.edufliang/cpp con-
tains the following resources:

B Answers to review questions

Solutions to even-numbered programming exercises

Source code for the examples in the book

lntemctive. Self-Test (organized by sections for each chapter)
Supplements

Resource links

Errata

Supplements

The text covers the essential subjects. The supplements extend the text to introduce additional
topics that might be of interest to readers. The following supplements are available from the
Companion Website.

Suppl for Introduction to Prog g with C++
T
Part I General ! Part 111 Preprocessor
i
A Glossary ! A Preprocessor Directives
g Installing “&W“‘! W‘:’X’m‘“ - Part IV Advanced C++ Topics
:Conmmd’s Window ! A Multiple Inheritance
Codi Guideli 1 B Namespaces
e Style . C Operator Keywords
P:"‘JI;IZECJMSK P u 1 ! Part V Legacy Topics
5 ey wi ! A Redirecting Input/Qutput
?‘ mm et S G : B Using Command-Line Argument
D C++Builder Tutorial i € CgotoStatements
E Learning C++ Effectively with C++Builder |1 D € printf Statements

Instructor Resource Website:

The Instructor Resource Website accessible from www.prenhall.com/liang contains the follow-
ing resources:

B Microsoft PowerPoint slides with interactive buttons to view full-color, syntax-
highlighted source code and to run programs without leaving the slides.

& Sample exams. In general, each exam has four parts:

1. Multiple-choice questions or short-answer questions (most of these are different from
the questions in the self-test on the Companion Website)

2. Correct programming errors
3. Trace programs
4. Write programs

B Solutions to all the exercises. Students will have access to the solutions of even-numbered
exercises in the book’s Companion Website.

B Web-based quiz generator. (Instructors can choose chapters to generate quizzes from a
large database of more than 2000 questions.)

8 Online quiz. (Students can take the online quiz for each chapter, and a quiz report will be
sent to the instructor.)

Some readers have requested the materials from the Instructor Resource Website. Please
understand that these are for instructors only. Such requests will not be answered.

Preface vii

Acknowledgments

I would like to thank Ray Greenlaw and my colleagues at Armstrong Atlantic State University
for enabling me to teach what I write and for supporting me in writing what I teach. I thank
the students in my C++ class for proofreading the draft.

This book was greatly enhanced thanks to the following reviewers:

Dan Lipsa Armstrong Atlantic State University
Hui Liu Missouri State University

Ronald Marsh University of North Dakota

Charles Nelson Rock Valley College

Martha Sanchez University of Texas at Dallas

Kate Stewart Tallahassee Community College
Margaret Tseng Montgomery College

Barbara Tulley Elizabethtown College

Itis a great pleasure, honor, and privilege to work with Prentice Hall. I would like to thank
Marcia Horton, Tracy Dunkelberger, Robin O’Brien, Christianna Lee, Carole Snyder, Mack
Patterson, Vince O’Brien, Camille Trentacoste, Xiachong Zhu, Rose Kernan and their col-
leagues for organizing, producing, and promoting this project, as well as Shelly Gerger-
Knechtl for copy editing and Scott Disanno for proofreading.

As always, I am indebted to my wife, Samantha, for her love, support, and encouragement.

Y. Daniel Liang
liang@armstrong.edu
www.cs.armstrong.edu/liang/cpp

BRIEF CONTENTS

PArT 1

FUNDAMENTALS OF
PROGRAMMING

1 Introduction to Computers,
Programs, and C++

Primitive Data Types and Operations
Selection Statements

Leops

Functions

Arrays

Pointers and C-Strings

[BN B« NS, I NN U Y

Recursion

PART 2 OBJECT-ORIENTED
PROGRAMMING

9 Objects and Classes

10 More on Objects and Classes
11 Inheritance and Polymorphism
12 File Input and Output
13 Operator Overloading
14 Exception Handling

33
67
101
135
181
219
251

271

273

31
343
373
399
425

PART 3 Dara Srructures

15 Templates ¢

16 Linked Lists, Stacks, and Queues

17 Trees, Heaps, and Priority Queues
18 Algorithm Efficiency and Sorting

19 STL Containers

20 STL Algorithms

APPENDIXES

A C++ Keywords

B The ASCII Character Set
C Operator Precedence Chart
D Bit Operations

INDEX

449
451
469
497
517
547
579

619

621
622
624
626

627

CONTENTS

ParT 1

Chapter 1

LI
1.2
13
1.4
1.5
1.6
1.7
1.8
1.9
110
LI
112

Chapter 2

21
22
23
24
25
26
27
28
29
210
Zll
212
2.3
2.14
215

FUNDAMENTALS OF PROGRAMMING

Introduction to Computers,
Programs, and C++

Introduction

What Is a Computer?

Programs

Operating Systems

(Optional) Number Systems

History of C+

A Simple C++ Program

C#+ Program Development Cycle
Developing C++ Programs Using Visual C++
Developing C++ Programs Using Dev-C++
Developing C++ Programs from Command Line on Windows
Developing C++ Programs on UNIX

Primitive Data Types and Operations

Introduction

Writing Simple Programs

Reading Input from the Keyboard
Omitting the std: : Prefix

Identifiers

Variables

Assignment Statements and Assignment Expressions
Named Constants

Numeric Data Types and Operations
Numeric Type Conversions

Character Data Type and Operations
Case Studies

Programming Style and Documentation
Programming Errors

Debugging

33

34
34
36
37
38
38
39
4
2
8
50
52
57
58
59

Chapter 3

3l
32
33
34
35
3.6
37
38
39
3.10
311
312
3.13
3.14

Chapter 4

4.1
42
43
44
4.5
4.6
4.7
438
49
4.10

Chapter 5

5.1
5.2
5.3
54
5.5
5.6
SiT
5.8
5.9

Selection Statements

Introduction

The boo1 Data Type

if Statements

Example: Guessing Birth Dates
Logical Operators

if ... else Statements
Nested i f Statements
Example: Computing Taxes
Example: A Math Learning Tool
switch Statements
Conditional Expressions
Formatting Output

Operator Precedence and Associativity
Enumerated Types

Loops
Introduction

The while Loop
The do-while Loop
The for Loop
Which Loop to Use?
Nested Loops

Case Studies

(Optional) Keywords break and continue

Example: Displaying Prime Numbers
(Optional) Simple File Input and Output

Functions

Introduction

Creating a Function

Calling a Function

void Functions

Passing Parameters by Values
Passing Parameters by References
Overloading Functions

Function Prototypes

Default Arguments

67
68

69
71
3
76
7
79
82
83

86
89
91

101

135

136
136
137
139
141
143
145
147
149

Contents xi

xii Contents

5.10
5.1
5.12
5.13
5.14
5.15
5.16

Chapter 6

6.1
6.2
63

" 64
6.5
6.6
6.7
6.8

Chapter 7

7l
12
73
74
75
76
7
78
79
710

Chapter 8

8.l
8.2
83
84
8.5
8.6
8.7

Case Study: Computing Taxes with Functions
Reusing Functions by Different Programs

Case Study: Generating Random Characters
The Scope of Variables

The Math Functions

Function Abstraction and Stepwise Refinement
(Optional) Inline Functions

Arrays

Introduction

Array Basics

Passing Arrays to Functions
Returning Arrays from Functions
Searching Arrays

Sorting Arrays

Two-Dimensional Arrays
(Optional) Multidimensional Arrays

Pointers and C-Strings
Introduction

Pointer Basics

Passing Arguments by References with Pointers
Arrays and Pointers

Using const with Pointers

Returning Pointers from Functions

Dynamic Memory Allocation

Case Studies: Counting the Occurrences of Each Letter

Characters and Strings
Case Studies: Checking Palindromes

Recursion

Introduction

Example: Factorials

Example: Fibonacci Numbers
Problem Solving Using Recursion
Recursive Helper Functions
Towers of Hanoi

Recursion versus Iteration

150
152
153
155
159
159
167

181

182
182
189
192
194
197
200
207

219
220
220
223
224
226
yrig
229
21
234
242

251

252
252
254
256
258
261
264

PART 2

Chapter 9

9.1
9.2
9.3
94
9.5
9.6
9.7
9.8
9:9
9.10
9.11
9.12
9.13
9.14
9.15
9.16

Chapter 10
0.
102
103
104
105
106
107
108
109
10.10

10,11
1012

Chapter 11

18]
1.2

OBJECT-ORIENTED PROGRAMMING

Objects and Classes

Introduction

Defining Classes for Objects
Constructors

Object Names

Separating Declaration from Implementation
Accessing Object Members via Pointers
Creating Dynamic Objects on Heap
The C++ string Class

Data Field Encapsulation

The Scope of Variables

The this Pointer

Passing Objects to Functions

Array of Objects

Class Abstraction and Encapsulation
Case Study: The Loan Class
Constructor Initializer Lists

More on Objects and Classes

Introduction

Immutable Objects and Classes
Preventing Multiple Declarations
Instance and Static Members
Destructors

Copy Constructors

Customizing Copy Constructors
friend Functions and friend Classes
Object Composition

Case Study: The Course Class

Case Study: The StackOfIntegers Class
The C++ vector Class

Inheritance and Polymorphism

Introduction
Base Classes and Derived Classes

271

273

274
274
276
276
280
282
283
283
287
290
292
293
295
297
297
301

31

312
312
314
316
319
321
324
326
328
329
332
335

343

34
344

Contents xiii

xiv Contents

1.3
1.4
1.5
1.6
1.7
1.8
1.9

Chapter 12

12.1
122
123
124
12.5
12.6
12.7
12.8
12.9

Chapter 13

13.1
13.2
133
134
13.5
13.6
13.7
13.8
13.9
13.10
13.11

Chapter 14

14.1
14.2
14.3
144
14.5
14.6

Generic Programming

Constructors and Destructors

Redefining Functions

Polymorphism and Virtual Functions

The protected Keyword

Abstract Classes and Pure Virtual Functions
Dynamic Casting

File Input and Output
Introduction

Text 1/O

Formatting Output

Member Functions: get1ine, get, and put
fstream and File Open Modes

Testing Stream States

Binary 110

Random Access File

Updating Files

Operator Overloading

Introduction

The Rational Class

Operator Functions

Overloading the Shorthand Operators
Overloading the [] Operators
Overloading the Unary Operators
Overloading the ++ and —— Operators
Overloading the << and >> Operators
Object Conversion

The New Rational Class
Overloading the = Operators

Exception Handling
Introduction
Exception-Handling Overview
Exception-Handling Advantages
Exception Classes

Custom Exception Classes
Multiple Catches

350
350
353
354
351
358
362

373

374
374
378
319
382
383
385
392
395

5288 8

407
407

410
412
413
420

425
426
426
428
429
432
437

14.7
14.8
14.9
14.10

PART 3

Chapter 15

15.1
15.2
15.3
15.4
15.5

Chapter 16
16.1
162
163
164
165
166
16.7
163

Chapter 17
11
172
173
174

Chapter 18
18,
182
183
184
18.5
18.6
187

Exception Propagation
Rethrowing Exceptions
Exception Specification
When to Use Exceptions

DATA STRUCTURES

Templates
Introduction

Templates Basics

Example: A Generic Sort
Class Templates

Improving the Stack Class

Linked Lists, Stacks, and Queues

Introduction

Nodes

The LinkedList Class

Implementing LinkedList

Variations of Linked Lists

Implementing Stack Using a LinkedList
Queues

(Optional) Iterators

Trees, Heaps, and Priority Queues

Introduction
Binary Trees
Heaps

Priority Queues

Algorithm Efficiency and Sorting

Introduction

Estimating Algorithm Efficiency
Bubble Sort

Merge Sort

Quick Sort

Heap Sort

External Sort

442
443

449

451

452
452
454
456
462

469
470
470
471

EE&EED

497

498
498
506
511

517

518
518
523
525
529
533
534

Contents xv

XVi

Contents

Chapter 19

Chapter 20

APPENDIXES

19.1
19.2
19.3
19.4
19.5
19.6

20.1
20.2
203
204
20.5
20.6
20.7

208

20.9
20.10
20.11
20.12
20.13
20.14
20.15
20.16
20.17
20.18
20.19

20.20

Appendix A

Appendix B

Appendix C

Appendix D

INDEX

STL Containers
Introduction

STL Basics

STL Iterators

Sequence Containers
Associative Containers
Container Adapters

STL Algorithms

Introduction

Types of Algorithms

copy

filland fill_n

generate and generate_n

remove, remove_if, remove_copy, and remove_copy_if

replace, replace_if, replace_copy,
and replace_copy_if

find, find_if, find_end, and find_first_of
search and search_n

sort and binary_search

adjacent_find, merge, and inplace_merge
reverse and reverse_copy

rotate and rotate_copy

swap, iter_swap, and swap_ranges

count and count_if

max_element and min_element
random_shuffle

for_each and transform

includes, set_union, set_difference,
set_intersection, and set_symmetric_difference

accumulate, adjacent_difference, inner_product,
and partial_sum

C++ Keywords

The ASCII Character Set
Operator Precedence Chart
Bit Operations

547

548
553
560
566
570

579
580
580
581
583
584
585

588
591
595
596
598

601
602

ggge

606
609

619

621
622
624
626

627

