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PREFACE

The phrase “harmonic analysis in phase space” is a concise if somewhat
inadequate name for the area of analysis on R" that involves the Heisenberg
group, quantization, the Weyl operational calculus, the metaplectic representa-
tion, wave packets, and related concepts: it is meant to suggest analysis on the
configuration space R™ done by working in the phase space R® x R*. The ideas
that fall under this rubric have originated in several different fields—Fourier
analysis, partial differential equations, mathematical physics, representation
theory, and number theory, among others. As a result, although these ideas are
individually well known to workers in such fields, their close kinship and the
cross-fertilization they can provide have often been insufficiently appreciated.
One of the principal objectives of this monograph is to give a coherent account
of this material, comprising not just an efficient tour of the major avenues but
also an exploration of some picturesque byways.

Here is a brief guide to the main features of the book. Readers should
begin by perusing the Prologue and perhaps refreshing their knowledge about
Gaussian integrals by glancing at Appendix A.

Chapter 1 is devoted to the description of the representations of the Heisen-
berg group and various integral transforms and special functions associated to
them, with motivation from physics. The material in the first eight sections
is the foundation for all that follows, although readers who wish to proceed
quickly to pseudodifferential operators can skip Sections 1.5-1.7.

The main point of Chapter 2 is the development of the Weyl calculus
of pseudodifferential operators. As a tool for studying differential equations,
the Weyl calculus is essentially equivalent to the standard Kohn-Nirenberg
calculus—in fact, this equivalence is the principal result of Section 2.2—but it
is somewhat more elegant and more natural from the point of view of harmonic
analysis. Its close connection with the Heisenberg group yields some insights
which are useful in the proofs of the Calderén-Vaillancourt (0,0) estimate and
the sharp Garding inequality in Sections 2.5 and 2.6 and in the arguments
of Section 3.1. Since my aim is to provide a reasonably accessible introduc-
tion rather than to develop a general theory (in contrast to Hérmander [70]),
I mainly restrict attention to the standard symbol classes S’" . Moreover, I
assume that the relevant estimates on symbols and their denvatlves hold uni-
formly on all of R™ rather than on compact sets. This simplification makes
the theory cleaner without restricting its generality in an essential way, as the



viii PREFACE

study of localized symbols can generally be reduced to the study of global ones
by standard tricks involving cutoff functions.

Chapter 3 grew out of my attempt to understand the Cérdoba-Fefferman
paper [33] on wave packet transforms in the context of the Weyl calculus. What
has resulted, in Sections 3.1 and 3.2, is a new approach to their results which
shows that, for some purposes, their Gaussian wave packets can be replaced by
arbitrary (nonzero) even Schwartz class functions.

Chapter 4 is devoted to the metaplectic representation. It is more com-
prehensive than most other accounts in the literature, but it is still only an
introduction. An exhaustive discussion of the many facets and applications of
this beautiful representation and its siblings and children would require a book
by itself.

Finally, Chapter 5 is my own retelling of some recent work of R. Howe [76],
whom I wish to thank for permission to include his results. It ties together a
number of strands from the previous chapters and provides, in my opinion, a
satisfying conclusion to the book.

One problem with writing a book like this is deciding what background to
expect of the readers. Basically, I take for granted a knowledge of real analysis,
Fourier analysis, and basic functional analysis such as can be found in the first
eight chapters of my text [50]; on this foundation, plus a few additional facts
from functional analysis and Lie theory that are needed here and there, the
book is pretty much self-contained. However, the material in it impinges on
a number of subjects, including partial differential equations, spectral theory
and the analysis of self-adjoint operators, Hamiltonian mechanics, quantum
mechanics, Lie groups, and representation theory. Readers who are acquainted
with these subjects will find their appreciation enhanced thereby; those who
are not will find a few places where the path is hard to follow, but they are
urged to forge resolutely ahead.

Another problem is deciding where to stop. I have allowed the selection
of topics treated in detail to be governed by personal taste, while providing an
extensive list of references to related material. These references, together with
the references they contain, should be enough to keep anyone busy for quite a
while. Nonetheless, many readers will undoubtedly ask at some point or other,
“Why didn’t you mention topic X or the work of Y?” In some cases I can plead
the necessity of keeping the scope of the book within reasonable bounds, but
in others the answer must be—as Samuel Johnson said when asked why he
had given an erroneous definition in his Dictionary—“Ignorance, madam, sheer
ignorance.”

The seeds in my mind from which this book grew began to germinate after
I attended the conference on Harmonic Analysis and Schrédinger Equations
at the University of Colorado in March 1986. The book took shape during
my sabbatical in the following academic year. In particular, I gave a series
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of lectures at the Bangalore Centre of the Indian Statistical Institute in the
winter of 1987 that constituted a sort of first draft of Chapters 1, 2, and 4.
I am grateful to the Indian Statistical Institute, the University of New South
Wales, the Australian National University, and especially my friends on their
faculties, for providing me with extremely congenial environments in which to
work during the first half of 1987.

Gerald B. Folland
Seattle, Washington
June, 1988
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PROLOGUE.
SOME MATTERS OF NOTATION

Readers are urged to examine this material before proceeding further.

Integrals. The integral of a function f on R™ or C" with respect to
Lebesgue measure will be denoted by [ f(¢) d¢ where £ is any convenient dummy
variable, be it real or complex. Thus, if z is a (scalar) complex variable, dz
denotes the element of area on C and not the holomorphic differential used in
defining contour integrals.

Functions and Distributions. We use the standard notation of [50] for
function spaces on R™ or C". For example, LP(R") is the L? space with respect
to Lebesgue measure, ||f||, is the L? norm of f, and C°(R™) is the space of
C°° functions with compact support. The inner product on L? is denoted by

(1) T / TS

Inner products on other Hilbert spaces will also be denoted by (:,:) or by (-, )«
where * is a subscript to label the Hilbert space in question.

S(R™) and §'(R™) are the Schwartz spaces of rapidly decreasing smooth
functions and tempered distributions, respectively. “Convergence in §'” always
means convergence in the weak * topology on §'. The pairing between S and
S' will be denoted either by integrals or by pointed brackets, in a manner
consistent with equation (1). Thus, if f € ' and ¢ € S we write

/d)(a:)f(m) dz =1im/¢(z)f,-(:c) dz
(6.0) = T8 =tim [ =)@ e,

where {f;} is any sequence of smooth functions that converges in &' to f. In
general, we shall be quite cavalier about writing distributions as if they were
functions, especially under integral signs. § will denote the Dirac distribution
defined by (6, f) = f(0).

Of fundamental importance for us are the operators X; and D; on distri-
butions on R" defined by

1 of

@) X;f)=)=2;f(e),  Dif =5ap-
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We generally regard X; and D; as continuous operators on § or §'. When
we regard them as unbounded operators on L?, their domains are the obvious
maximal ones: the domain of X; is the set of f € L? such that X;f € L?, and
likewise for Dj.

Matrices and Vectors. We denote by M, (R) and M,(C) the space of
n x n matrices over R and C, respectively. We identify linear endomorphisms of
R™ and C" with their matrices with respect to the canonical basis, and hence
think of elements of M,(R) and M,(C) as either matrices or linear maps,
according to context. The transpose and Hermitian adjoint of a matrix A are
denoted by At and A*; for real matrices, when these two notions coincide, we
generally use the notation A*. We employ the standard notation for the classical
groups of invertible matrices: GL(n,R), U(n), S0(n), etc. The n x n identity
matrix is denoted by I, when precision is needed, but more often simply by
I. For powers of determinants, we use the convention that is common for trig
functions: det® A = (det A)%.

Except in a few instances where clarity demands otherwise, we denote the
dot product of two vectors in R™ or C™ by simple juxtaposition:

n

Ty = Z:z:jyj (z,y € R" or C™).
1

Thus, the Hermitian inner product of z,w € C" is 2. We also set

12::::1:23:? (z € R" or C"),
leff === 1z%  (2€C7).

When linear mappings intervene in such products, we shall generally take care
to write them between the two vectors, thus:

xAy=yAtz=w~Ay=szAjkyk (z,yGC", AEM,,(C)).

The notation zAy can be regarded as a shorthand for either the matrix product
! Ay (where z and y are regarded as column vectors) or the physicists’ bra—ket
notation (Z|Aly). These “dotless products” may look a bit peculiar at first, but
they are usually very efficient.

One other bit of notation for vectors will be frequently used in connection
with pseudodifferential operators: if £ € R",

1/2

& =0+¢)
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The Fourier Transform. In this book the Fourier transform and its
inverse are defined by

FfE) = Fe) = f e~27i2 f(3) do,
Fife) = [ i,

for f € S(R™). (Note the “dotless products,” as discussed above, in the ex-
ponents.) F and F1, of course, extend uniquely to linear automorphisms of
S'(R™). The placement of the 27’s in the exponent is uncommon in partial dif-
ferential equations but almost mandatory in harmonic analysis, for it is the only
way, short of renormalizing Lebesgue measure, to make J both an isometry on
L? and an algebra homomorphism on L':

Ifla=1fl  and (fxg)" =13,
where

fro() = / f(e —v)o(y)dy = / fwe(z - y)dy.

From the physical point of view, this convention regarding the 27’s amounts to
setting Planck’s constant h, rather than the more common h = h/2, equal to
1. It is the reason for the 2 in the definition of D; (formula (2) above). It also
has the effect that our definition of Hermite functions is not quite the standard
one; see Section 1.7.

Incidentally, the Fourier inversion formula

J[ e sy dva = s

can be expressed neatly in the language of distributions as

(3) / e?riztde = §(z).

Sometimes the most perspicuous way of evaluating an iterated integral involving
exponentials is to pretend that the integral (3) is absolutely convergent and
interchange the order of integration. This trick is used several times in the
text; in each instance the reader may verify that it is an application of the
Fourier inversion theorem.

Phase Space. There seems to be no system of terminology for the var-
ious objects associated with phase space that is consistent with itself as well
as with the traditions of classical mechanics and differential equations and that
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leads to the most elegant formulas in all situations. The system used in this
book was not adopted without considerable thought, but it sometimes leads
to formulations that readers (including the author) may find discordant. The
following paragraphs are in the nature of an apology for this state of affairs.

In the first place, although the functorially correct definition of phase space
is (R™)* x R™ (or, in some contexts, the cotangent bundle of R"), I have
abandoned any attempt to distinguish between R™ and (R™)*. Maintaining
this distinction seems to be more trouble than it is worth, especially when (as
frequently happens) we have to consider both (R™)* x R" and its dual space.
So, in this book, phase space is just R" x R™, or R*" for short.

Next, there is the question of what to call points in phase space, or the
coordinate functions on phase space. In classical mechanics the usual choice
is (p,q), where p € R™ denotes momentum and ¢ € R" denotes position.
On the other hand, in the literature of partial differential equations the same
variables are usually denoted by ¢ and z. I have found it convenient to employ
both of these sets of labels: (&, z) for one copy of R?" on which the symbols of
pseudodifferential operators live, and (p, q) for another copy of R?" (actually, its
dual) on which their Fourier transforms live. The resulting usage of the letters
p and ¢ is sometimes, but not always, consistent with their interpretation as
momentum and position.

I chose the ordering (p, ¢) in order to make certain formulas involving the
Heisenberg group come out naturally (essentially, to avoid making Planck’s con-
stant negative). To prevent massive confusion, I was then forced to order the
dual variables as (£, z) rather than (z, £). Consequently, in this book pseudodif-
ferential operators are written as o(D, X), in flagrant disregard of the custom
of writing them as o(X, D) or o(z, D). This, however, may serve the useful
purpose of reminding readers conversant with pseudodifferential operators that
o(D,X) is defined here by the Weyl calculus instead of the Kohn-Nirenberg
calculus.

There are two canonical symplectic forms on R™ x R", differing from each
other by a factor of —1. One must simply make a choice; the symplectic form
used here is denoted by square brackets and defined by

n

((p,9), (@',4)] =pd' —ap' =) (pid} — iP),
1

or

X, Y]=XJY  where J:_(_OI é)

The point that I found most troublesome is the question of whether to use
the Euclidean Fourier transform or the symplectic Fourier transform on R?",
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Ff(&z)= // e~ 2miwe+a) f(p q)dpdq = // e~2mi0)(69) f(p, g) dpdg

or

Foympf(£;7) = // 2mire=a) f(p q)dpdg = // il 62 £(p, q) dpdg,

and correspondingly, whether to parametrize the Schrodinger representation by

2mi(p D+¢X) 27mi(p X —g¢D)
)

p(p,a) =€ oo p(pg)=e
where
eZﬂi(pD+qX)f($) — e"ipq+2ﬂ'q”f(a: +p),

621\’:‘(pX—qD)f(x) = e—"iP9+2‘"iP‘Cf(m — q),

Since the symplectic structure of R?" is of fundamental importance, the sym-
plectic Fourier transform is in some ways more appropriate. Moreover, the
operator e2mi(pX—4D) is geometrically more natural than e2mipD+aX) hecause
it transforms wave packets whose mean momentum and position are a and b to
wave packets whose mean momentum and position are a + p and b+ g, rather
than a + ¢ and b — p. However, | was persuaded to use the Euclidean Fourier
transform and the operators e?™(»P+4X) by the following three considerations.

1. I find the symplectic Fourier transform confusing to use in performing
specific calculations.

2. Occasionally we need to view R?" both as the phase space of R" and as
a configuration space in its own right (i.e., as R™ where n' happens to
be 2n), and consistency then demands the use of the Euclidean Fourier
transform.

3. The parametrization e2™(PX~4D) leads to some unsightly factors of —i in
the correspondence between the Schrodinger and Fock models.

This dilemma is in any event not of earthshaking importance, because the
symplectic Fourier transform is simply the composition of the Euclidean Fourier
transform with the map (£,2) — (z,—¢), which belongs to both SO(2n) and
Sp(n,R); and the operators e2mipD+4X) and ¢27iPX—4D) are intertwined by
the Fourier transform on R"™:

e21ri(pX—qD) - ]_-GZm'(pD+qX)]:'—1.

It is therefore a simple matter to translate formulas from one scheme to the
other.



