e LM R Geist il J71:

NEURAL NETWORKS SYSTEM
DESIGN METHODOLOGY

David D. Zhang

Department of Computer Sciernce

City University of Hong Rong
HAowloon, Hong Kong




NEURAL NETWORKS SYSTEM
DESIGN METHODOLOGY

HETMBRE W ITH A

David D. Zhang

Department of Computer Science
City University of Hong Kong
Kowloon, Hong Kong

L LY FREHE)

MEXFEHBEH



(FOFEBEF 1585
R

AHNTREWHETRBHEUNT . REER T HRTNE RGBT EERN 3L
EENRT MR VISICKHABER BB LR E TG . 2 EGQT T HEEEXTRYTR
BR-BETEERHEAR. BEATER GTENMBETFETAMNERSEH, NAMEESER
R EMPFRENZILH.

@Tsinghua University Press, Beijing, China, 1996, All rights reserved.
© MEXRFHBARA, PEILR, 1996 ARRFTH  BETL 5.
A PEHELEREXFHBHBEBHEE THREETSHE.

Bl HERS%E (CIP)#1E

AT G RGEIRIT T B/ R E. —Jb.
K2 H A, 1996
ISBN 7-302-02163-5

[. #ee L. 3K O, HEMB-FMERE-RERIT-FE V. TP393

rh[E AR A & H 18 CIP $iB 5 (96) 88077925

HARHE : HERKER M GERERRER A, HE4100084)
ENRIE . HHERFERT

KAt FEBEEIEREERTH

T A, 787X1092 1/16 ENgk: 12 FH. 280 T F

RR IR 19964E5 H %1 19964E5 H 8 17K IR

4 5. ISBN 7-302-02193-5/TP+1092

El #. 0001—1200

£ fr: 26.0050



NEURAL NETWORKS SYSTEM DESIGN
METHODOLOGY

Neural Networks System Design Methodology presents an integrated design
approach to this new engineering discipline. Three topics of the system design
methodology, including several model definitions, architectural descriptions, and
hardware implementations, are investigated and their coordination are discussed in
detail after an overview of the field of ANNs. Engineering applications of ANNs to
fuzzy clustering, speech recognition, classification and pattern recognition are
covered. The book can be used as a text book or reference for graduate or senior
undergraduate courses on the subject. It can also be used by researchers in the field.

David Zhang gradnated in computer science from Peking University in 1974 and
received his M.Sc and Ph.D degrees in computer science and engineering from Harbin
Institute of Technology (HIT) in 1983 and 1985, respectively. From 1986 to 1988 he
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Academia Sinica, Beijing, China. In 1988, he joined the University of Windsor, Ontario,
Canada, as a visiting professor in electrical engineering. He received his second Ph.D in
electrical and computer engineering at University of Waterloo, Ontario, Canada, in 1994.
. Currently, he is an associate professor in City University of Hong Kong. He has
authored and co-authored near 100 papers including two books, as well as received
several recognisable project awards. Dr. Zhang is a senior member of the IEEE.






Preface

Researchers and engineers have long been fascinated by how efficient and how fast
biological neural networks are capable of performing such complex tasks as
recognition. Such networks are capable of recognizing input data from any of the five
senses with the necessary accuracy and speed to allow living creatures to survive.
Machines which perform such complex tasks as recognition, with similar accuracy
and speed, were difficult to be implemented until the technological advances of VLSI
circuits and systems in the late 1980’s. Since then, the field of Artificial Neural
Networks (ANNs) have witnessed an exponential growth and a new engineering
discipline was born. Today, many engineering curriculums have included a course or
more on the subject at the graduate or senior undergraduate levels.

This book attempts to present a system design methodology of ANNs for pattem
recognition applications. The methodology emphasizes a coordination between model
definition, architectural description, and hardware implementation. Depending on the
different pattern recognition applications, the methodology provides appropriate ANN
models suited to parallel / pipeline processing, mapping the models onto the
corresponding VLSI architectures and finally VLSI implementation. The book
discusses these three phases:

1. Parallel ANN Model: Three types of models, an unsupervised learning model for
fuzzy clustering, a supervised training model for pattern classification and a
neural-like network model for finite ring computing, are developed. Compared
with the conventional approaches, the new models can greatly reduce the
complexity of the VLSI implementation.

2. VLSI Architecture: Three typical architectures, including a parallel architecture
built by systolic arrays, a pipeline architecture based on window operation and a
simplified architecture using a priori knowledge, are designed. They are all easily
implemented in VLSI medium. '

3. Hardware Implementation: Two design approaches are investigated. One is a
digital array compressor design based on a complex complementary pass-transistor
logic (C2PL) and the other is a hybrid programmable ANN design using BiCMOS
circuit building blocks. As an example, a VLSI implementation for finite ring
neural network is developed. Our simulation results show their advantages in
power, time and area.

The effectiveness of neural network system design methodology is illustrated by
applying the designs to various pattern recognition applications, and analyzing the
performances of the given systems.

It is my hope that this book will contribute to our understanding of this new and
exciting discipline; ANNs System Engineering.

David D. Zhang
City University of Hong Kong
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1

INTRODUCTION

1.1 ANN FOR PATTERN RECOGNITION

Artificial Neural Networks (ANN) are massively parallel interconnected networks of
simple (usually adaptive) nodes which are intended to interact with objects of the real
world in the same way as biological nervous systems do | 1].

The interest in these networks is due to the general opinion that they are able to
perform some complicated and creative tasks, such as pattern recognition, similar to
the way they are performed by human brains [2,10,35]. The implementations of these
tasks by traditional computing methods have only reached relatively low performances
in some limited aspects or environments. Nevertheless. as neural systems show some
properties, like association. generalization, parallel searching. and adaptation to
changes in the environment, which are analogous to human brain propertics. they
promise improved results.

The usage of ANNs for pattern recognition may be traced back to the perceptron
models originated by Rosenblatt in 1950 [2]. The perceptron models used the concept
of reward and punishment. In late 1960s, the progress in ANN models slowed down
due to the limited capabilities of the early single layer perceptron models. In the mid-
1970s and early 1980s, with the availability of enhanced computing power the
progress in the development of ANN models accelerated. Researchers were able to
model and test their theories about the functioning of the brain.

Today a number of well-developed theories and models off ANNs wre available
[3,34-36,40-47,55-64]. These networks consist of a large number of simple
processing elements called nodes that represent the neurons. These nodes are
interconnected by the synaptic connections. These models are capable of learning and
making decisions; and are suitable for a variety of pattern rccognition tasks [36.39].

Pattern recognition techniques can be grouped into two classes: supervised and
unsupervised techniques. In supervised methods, certain number of samples are
available for each category and these samples are used to train the classifier. In the
case of unsupervised classification no training samples are available. and the network
learns by detecting the similarity between the input patterns.
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Fig.1.1 A prototype biological neuron

Today many ANN models and algorithms for pattern recognition applications are
available. They include Back-Propagation (BP) learning, Competitive learning,
Kohonen learning, Adaptive Resonance Theory, Neocognitron models, Hopfield
Networks, and Boltzman machines [5-13]. Applications of ANNs include character
recognition, human face identification, speech recognition, multispectral image
analysis, and expert systems [14-18]. The BP learning is essentially of the supervised
type and the network learns with the help of training sets. The BP networks have been
successfully used for many pattern recognition problems [5,15-17].

Another important class of neural networks is self-organizing neural networks. The
networks with competitive learning algorithms are self-organizing networks. Early
models of competitive learning were developed by Malsburg in his study of visual
cortex [19]. Rumelhart and Zipser have suggested an algorithm for competitive
learning [9]. The main disadvantage of competitive learning is that the network forgets
its earlier learning with new learning and the network may get set into an unstable state
with the spurious input patterns. To overcome this drawback, Grossberg developed
an adaptive resonance architecture [10-11] and Fukushima proposed the Neocognitron
models [12]. Kohonen developed a learning paradigm for self-organizing networks
known as Kohonen learning [6-7]. These algorithms can be used for a variety of tasks
in pattern recognition.

ANNSs consist of parallel distributed processing (PDP) models. The PDP models
are well described in the work of Rumelhart and McCelland [4]. The functional
synthesis of these models consists of establishing a relationship between the several
inputs and one or more outputs. In ANN, the nodes are connected to each other by the
synaptic connections or the links. There is an associated synaptic strength or a weight
with each connection. During the learning, the weights which represent the knowledge
stored in the network are updated. The ANNs consist of two or several layers of
nodes and each layer contains several nodes. The observed feature vector is presented
to the input nodes. The input values may represent the probability that the discrete
feature is present. Each possible decision or outcome can be represented by a node in
the output layer.
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12 NEURAL NETWORK MODEL

The basic element of neural networks of a brain is a neuron. The neurons consist of
four basic parts: cell body, synapses, axons, and dendrites. The cell body essentially
sums the membrane potential provided by the synapses. The synapses provide an
output. Axons are the connections between the neurons that carry charge, and the
dentrites are the branch-like structures which provide the sensory input to a cell body
(See Fig.1.1). ANNs mimic the functioning of the neural networks of a brain. ANN
consists of a large number of simple node. Each of the nodes is connected to another
node(s) through a synaptic connection or a link [34].

Information processing takes place through the interaction between the nodes.
Each node is associated with an activation value @;(t). The activation value passes

through an activation function f((pj) to provide an actual output yj(®. These outputs
pass through the unidirectional synaptic connections. There is an associated number,
wij, called the weight or the connection strength, that determines the amount of effect
node i can have on node j. For each node all the inputs are combined, and the total
input, along with the current activation, determines the new activation value
(Fig.1.2).

Usually ANNs consist of a number of layers and nodes in each layer. The most
general model assumes the complete interconnections between all the nodes, and
resolves the cases of the nonconnected nodes (i, j) by setting the weights wjj = 0. A
simple three-layer feedforward network is shown in Fig.1.3. The networks can be
synchronous or asynchronous. The synchronous networks are controlled by clock
pulses; whereas in asynchronous networks the nodes respond instantaneously to the
incoming inputs.

The connections between the nodes can be bidirectional or unidirectional. The
activation function and the activation values to be used in the network are often
restricted in the range [0, 1]. In the case of discrete values, the activation values can

take only two values — O or 1. The number of activation functions can be used to

define the propagation law in the network. The commonly used activation functions
are shown in Fig.1.4. For a sigmoid function the output at node j is

1
1+ exp (-((pj + Gj))

(L.1)

yj =flop =

where Bj is a bias and the net input @; is represented as

n
@ =Y (xj wij) (1.2)

i=1



