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Foreword

Algebra and Trigonometry—Functions and Applications is designed for a
course in intermediate algebra, advanced algebra, and trigonometry. The
book can be used in two different ways:

1. As an algebra and trigonometry book, with applications,
2. As an applications book, with supporting algebra and trigonometry.

In either case, there are two possible sequences of presentation:

Intermediate Algebra
Chapters 1-8

A

Intermediate Algebra
Chapters 1-8

Advanced Algebra
Chapters 9-12

Y

Advanced Algebra
Chapters 9-12

Trigonometry
Chapters 13-15

Trigonometry
Chapters 13-15

Applications are handled by creating mathematical models of phenomena
in the real world. Students must select a kind of function that fits a given
situation, and derive an equation that suits the information in the problem.
The equation is then used to predict values of y when x is given or values
of x when y is given. Sometimes students must use the results of their
work to make interpretations about the real world, such as what “slope”
means, or why there cannot be people as small as in Gulliver’s Travels.
The problems require the students to use many mathematical concepts in
the same problem. This is in contrast to the traditional “word problems”
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of elementary algebra, in which the same one concept is used in many
problems.

The second edition differs from the first and revised editions in two
significant ways—technology and pedagogy. The computer is assumed to
be a normal part of students’ classroom experience rather than simply a
novelty. For the most part, students are expected to use existing computer
programs, notably computer graphic programs, rather than write their
own. A disk acompanying the Teacher’s Resource Book contains programs
written by the author that are sufficient for the purposes of this text. You
are, however, urged to seek out commercially-available software that is
faster and more user-friendly.

Ideas for using calculators have caused substantial differences in presenta-
tion of certain topics. For instance, exponential equations are solved at the
beginning of Chapter 6 by iterative methods on the calculators. Loga-
rithms then arise naturally as a quicker way to get the unknown exponent.
Presented this way, there is no doubt in the students’ minds that a loga-
rithm is an exponent! The calculator thus leads to a better understanding
of theoretical concepts and is not simply a way to work old problems
quicker.

Pedagogically, there are far more opportunities for review of previous
concepts. One major way this review is accomplished is through the “Do
These Quickly” problems at the beginning of each problem set. Once the
students have learned to work a particular kind of problem, they develop
speed as these problems reappear in five-minute exercises that concentrate
only on answers. Mathematical-model problems have been spread out so
the students must recall how to use linear and quadratic functions while
they are working exponential model problems.

The topics in the text itself are largely the same as in the previous edi-
tions. Work on data analysis has been added in some problem sets to show
students how to decide which kind of function is an appropriate model.
Material on statistics, including the normal distribution, appears in the
probability chapter.

The text still starts with a brief review of the basic axioms and properties.
It moves quickly to topics the students have probably not seen before, at
least in the method of presentation. The purpose is two-fold. First, stu-
dents should not feel as if most of the course is spent reviewing elemen-
tary algebra. Second, the presentation emphasizes the role of algebra and
trigonometry as the foundation for calculus, rather than as the completion
of elementary algebra. By presenting both algebra and trigonometry as the
study of classes of functions, students learn the essential unity of the two
subjects.
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Henry Pollack of Bell Telephone Labs claims that there are just two Kinds
of numbers: “real” numbers such as encountered in everday life, and
“fake” numbers such as encountered in most mathematics classes! Since
this book has many problems involving untidy decimals (“real” numbers),
a calculator or computer are called for where appropriate. There are also
problems that have small-integer answers (“fake” numbers) so that students
may gain confidence in their work when they are just learning a new tech-
nique.

Since all educators share the responsibility of teaching students to read and
write, there are discovery exercises so that students may wrestle with a
new concept before it is reinforced by classroom discussion. The students
are helped with this reading by the fact that much of the wording came
from the mouths of my own students. Special thanks go to Susan Cook,
Brad Foster, and Nancy Carnes, whose good class notes supplied input for
certain sections. Students Lewis Donzis and David Frey wrote computer
programs for some of the problems.

Thanks go to instructors in Florida, Illinois, Pennsylvania, South Dakota,
Texas, and Virginia for pilot testing the original materials. Special thanks
go to Bob Enenstein and his instructors in California for pilot testing the
second edition. The text reflects comments from review and classroom
testing by Charley Brown, Sharon Sasch Button, Pat Causey, Loyce
Collenback, Bob Davies, Walter DeBill, Rich Dubsky, Michelle Edge,
Sandra Frasier, Byron Gill, Pat Johnson, Michael Keeton, Carol Kipps,
Bill McNabb, Shirley Scheiner, Ann Singleton, Chuck Straley, Rhetta
Tatsch, Joel Teller, Susan Thomas, Kay Thompson, Zalman Usiskin, Jim
Wieboldt, Marv Wielard, Mercille Wisakowsky, Martha Zelinka, and
Isabel Zsohar. Calvin Butterball and Phoebe Small appear with the kind
permission of their parents, Richard and Josephine Andree.

Paul A. Foerster
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7 to 16 days Complex Numbers

(e.g.,2-3/,7,J3,J-5)

Have the form a + b/, where
aandb arereal,and /i =

—

Real Numbers i
(e.g.,3,-17.4,J5,m, 5)

Have points on the
number line.

Imaginary Numbers
(e.9., V=3,5J-2,-J-9)

Square roots of negative
numbers. Have no points
on the number line.

| L

Y

¥ Y

Contrary to former views of
mathematics, numbers were in-
vented by people, rather than
simply being discovered. In this
book you will see-how things in-
vented mainly to form a complete
mathematical system can be used
to describe things that happen in
the real world. First, however,
you must be sure that you and
your instructor are speaking the
same language! The first chapter
is designed with this purpose in
mind.

A

Y

Negative Numbers Zero Positive Numbers
(e.g.,-7.5,-58, -J3) (0) (e.g., 0.001, 37, V15 )
Numbers less than 0. Neither Numbers greater than 0.
positive nor
negative.
/ Y \
/ Y
Rational Numbers Irrational Numbers
(e.0.. 5>~ 5. 731, -5, (e.g., V5, 1T, m)
J9 0.333...) Cannot be expressed
he exactly as a ratio of two
Can be expressed exactly integers, but are real numbers.
as a ratio of two integers.
v
Radicals

(e.g., V5, —3\f1—1)

Integers
(e.g., 2,-17, 2001, 0)

Whole numbers and
their opposites.

Nonintegers

Involve square root, cube
root, etc., of integers.

Transcendental Numbers
(e.g., m)

Cannot be expressed as
roots of integers.

(e.g., 2 17, -4.63)

Fractions: Numbers between
the integers.

L Y

Y

(e.g., 2, 2001)

Positive integers or
counting numbers

Digits Even Numbers
(0,1,2,3,4,5,6,7,8,9)

Numbers from which the
numerals are made.

(e.g., 2046, -38, 562, 0)

Integers divisible by 2.
(Integral multiples of 2)

Odd Numbers
(e.g., -49, 15, 2001, 1)
Integers not divisible by 2.
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1-1 I SETS OF NUMBERS

From previous work in mathematics you should recall the names of differ-
ent kinds of numbers (positive, even, irrational, etc.). In this section you
will refresh your memory so that you will know the exact meaning of
these names.

Objective:
Given the name of a set of numbers, provide an example; or given a num-
ber, name the sets to which it belongs.

There are two major sets of numbers you will deal with in this course, the
real numbers and the imaginary numbers. The real numbers are given this
name because they are used for “real” things such as measuring and count-
ing. The imaginary numbers are square roots of negative numbers. They
are useful, too, but you must learn more mathematics to see why.

The real numbers are all numbers which you can plot on a number line
(see Figure 1-1). They can be broken into subsets in several ways. For in-
stance, there are positive and negative real numbers, integers and non-
integers, rational and irrational real numbers, and so forth. The diagram
facing this page shows some subsets of the set of real numbers.

The numbers in the diagram were invented in reverse order. The natural
(or “counting”) numbers came first because mathematics was first used for
counting. The negative numbers (those less than zero) were invented so
that there would always be answers to subtraction problems. The rational
numbers were invented to provide answers to division problems, and the
irrational ones came when it was shown that numbers such as V2 could
not be expressed as a ratio of two integers.

~ O O TR, (ST TS IS SO (1N S SN S A A,
-7 6 -5 4 -3 -2 -1 0 1 2 3 4 5 6 7

The real number line

Figure 1-1

Time: 1 day
Chalkboard Examples:

The key to success seems to be clear under-
standing of the word “rational” number.
Two features are important:
1. Rational means ratio of two integers.
2. The numeral need not be a ratio of two
integers, just as long as it can be ex-
pressed that way. For example, 5,
-V49, 13, etc., are rational numbers.
Also, not every ratio of two integers is
a rational number, for example 3.
Irrational—Can’t be expressed as a ratio of
two integers.
Transcendental— Can’t be expressed even
with radicals.

In both cases it is important for the students
to realize that these are real numbers. For
example, one does not even consider
whether \/—49 is rational or irrational since
it is not a real number to begin with!

Assignment:
Assign all 9 problems.

Problem Notes:

Problem 3 (the table) is tedious to grade.
However, it makes an excellent teaching
tool if a copy of the table is projected on
the screen. After the students have worked
the problem, you can quickly check the
boxes, a row at a time. You call out the kind
of number, and they respond with “Yes,” or
“No. When you hear wrong answers, stop
and talk!

Problem 8— Most students readily accept
2.333. . . as equaling 21, a rational num-
ber. If they want a more convincing proof,
try the following:



Letx = 2.333. ..
Then 10x = 23.333. .. .
5o 10x — x = 23.333. .. — 2.333. ..
9x = 21
21 7 1 .
y = — = — = 2—, a rational number.
9 3 3

In Section 11-6 they will use convergent ge-
ometric series to prove that any repeating
decimal represents a rational number.

Chapter 1 Preliminary Information
0

Other operations you will invent, such as taking logarithms and cosines,
lead to irrational numbers which go beyond even extracting roots. These
are called “transcendental” numbers, meaning “going beyond.” When all
of these various kinds of numbers are put together, you get the set of real
numbers. The imaginary numbers were invented because no real number
squared equals a negative number. Later, you will see that the real and
imaginary numbers are themselves simply subsets of a larger set, called
the “complex numbers.”

The following exercise is designed to help you accomplish the objectives
of this section.

| EXERCISE 1-1

1. a. whole numbers, positive, negative,

and 0

b.0,1,2,3,4,5,6,7,8,9

c. integers divisible by 2

d. numbers greater than 0

e. numbers less than 0

f. numbers expressible as a ratio of two
integers

g. numbers not expressible as a ratio of
two integers

h. square roots of negative numbers

i. numbers on the number line

J. positive integers

k. positive integers

I. numbers not expressible using only a
finite number of the operations +,

—,; X, <, 0r on integers
2. Examples may vary. e
a. 71 g. V3
b. 3 h. V-9
c. —58 i. 56.732
d. 17.23 j. 1027
2 A
€. —9— . I
3 |
3
fo 5=
8

. {counting numbers}

{natural numbers} counting was proba-
bly the first thing done with numbers
6. a. {real numbers}

b. {imaginary numbers}

rational

. rational

9. 0

7 I “NL%)

> B |

1. Write a definition for each of the following sets of numbers. Try to do
this without referring to the diagram opposite page 1. Then look to
make sure you are correct.

{integers}

{even numbers}

{negative numbers}

{irrational numbers}

{real numbers}

{counting numbers}

{digits}

{positive numbers}
{rational numbers}
{imaginary numbers}
{natural numbers}
{transcendental nos.}

AN R L T
— s Ao

2. Write an example of each type of number mentioned in Problem 1.

3. Copy the chart at right. Put a check mark in each box for which the
number on the left of the chart belongs to the set across the top.

4. Write another name for {natural numbers}.

5. Which of the sets of numbers in Problem 1 do you suppose was the
first to be invented? Why?

6. One of the sets of numbers in Problem 1 contains all but one of the
others as subsets.
a. Which one contains the others?
b. Which one is left out?

7. Do decimals such as 2.718 represent rational numbers or irrational
numbers? Explain.

8. Do repeating decimals such as 2.3333 . . . represent rational numbers
or irrational numbers? Explain.

9. What real number is neither positive nor negative?
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*0 is also an imaginary number.

| THE FIELD AXIOMS

Time: 1 day
l Chalkboard Examples:

E . i . balsi b h In this section students must recall the
TOm previous mathematics courses you probably remember names suc meanings “distributive,” “commutative,”

as, “Distributive Property,” “Reflexive Property,” and “Multiplication and so forth. One way to introduce the topic
Property of Zero.” Some of these properties, called axioms, are accepted is to have the students call out names of all
without proof and are used as a starting point for working with numbers.  the properties they can remember. let stu-



