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PREFACE

It is now half a century since H. Lebesgue created his
theory of the integral which has widely superseded in
modern analysis the classical conception due to B. Riemann.
It is, I think, regrettable that knowledge of the Lebesgue
integral seems to be still largely confined to the research
worker. There is nothing unduly abstract or unnatural
in this theory, nor anything in the proofs which would be
too difficult for a good honours student to grasp. If the
aim of university education be the teaching of general
ideas rather than that of technicalities, then the modern
notion of the integral should not be omitted from the
mathematical honours syllabus.

The main object of this book is to provide an introduc-
tion to the theory of the so-called absolute integral. It is
not an introduction to the ‘ calculus”: it is assumed
that the reader is familiar with this. But the book should
give the student a deeper understanding of the ideas under-
lying the calculus. It is also hoped that he will appreciate
the aesthetic side of a purely mathematical theory, quite
apart from its practical implications. Such an appreciation
is quite as essential as technical skill.

As the title indicates, I have tried to bring out con-
sistently the geometrical aspect of integration : the integral
of a (positive) function is the volume of the ordinate set
of the function. This seems to me, both historically and
intrinsically, the natural approach and that which is likely
to suit the student best.

The first part of the book deals with the problem of
volume in a space of n dimensions. First the older definition
of content (Peano, Jordan) is discussed. It is followed by
the theory of the modern and more satisfactory definition
of measure (Lebesgue).

The second part begins with the theory of Riemann’s
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vi PREFACE

integral of a function of n variables. This is defined
geometrically, using content as the underlying notion of
volume. Lebesgue’s integral is then obtained in a similar
way on replacing content by measure. The relation between
the two definitions, and the striking advantages of the new
integral, are thus clearly set out. The book ends with the
theory of the indefinite integral of a function of one variable :
the discussion of the familiar feature of the calculus, that
differentiation and integration are inverse operations.

It has been necessary, for reasons of space economy, to
restrict this account to the essentials of the theory: the
properties of the spaces L? and such important applica-
tions as length of arc and surface area had to be omitted.
Nor are the notions of the Stieltjes integral and of a non-
absolute integral (Denjoy-Perron) included. A list of books,
suitable for comparison or further study, is given at the
end. Of these, the book by H. Kestelman and the recent
Cambridge Tract by J. C. Burkill proceed on lines similar
to ours. In particular, it is hoped, that our geometrical
account of the absolute integral may serve as a stimulating
introduction to the standard work on integration, the book
by St. Saks, which, in the two different editions, presents
the modern more abstract approach to the subject.

It is somewhat difficult to provide exercises in a subject
which is essentially theoretical. I have given a few : the
solutions are at the end of each chapter.

Many friends have helped in preparing this text by
suggestions, criticism, and proof reading, and all deserve
my thanks : my Newcastle-Durham colleagues . F'. Bonsall,
Professor A. C. Offord (now in London), and Dr. J. V.
Whitworth must be specially mentioned. My main thanks,
however, are due to Dr. D. E. Rutherford who as editor
suggested the book and helped it along in many ways.
Finally, I wish to express my gratitude to the Publishers and
Printers for their patient and fine work under somewhat

difficult circumstances.
W. W. ROGOSINSKI

DurEAM UNIVERSITY, KING'S COLLEGE
NEWwWCASTLE UPON TYNE
January 1952



PREFACE TO SECOND EDITION

ONLY a few minor inaccuracies in the text have come to my
notice. These, together with some misprints, have now been
amended. Otherwise, apart from occasional added remarks,

the new edition is unchanged.
W.W.R.

Tare UNIVERSITY OF AARHUS
AARHUS, DENMARK
November 1961
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CHAPTER 1

SETS OF POINTS

14. The Euclidean space. The aim of the theory of
measure is to give a precise meaning, in as general form as
possible, to the intuitive but vague geometrical concepts
of length, area, and volume. The Euclidean space of
three dimensions, an ideal image of the “ intuitive ”’ space
of primitive sense experience, is a logical system of abstract
entities called points, lines, and planes which are inter-
related to form a ° geometrical ”’ pattern according to
certain rules called axioms

It is shown in co-ordinate geometry how to establish an
arithmetical model of this space. On introducing a system
of Cartesian co-ordinates a one-one correspondence between
all points P of the space and all ordered triplets (z, y, 2) of
real numbers is obtained. To the planes correspond linear
equations between the co-ordinates, and to the lines pairs
of simultaneous linear equations. The Euclidean axioms
are the equivalent of the ordinary arithmetical axioms of
this co-ordinate algebra.

In a similar way the system of all real numbers z can
be interpreted as an arithmetical equivalent of the line
(a space of one dimension), and the system of all ordered
pairs (z, y) of real numbers as an arithmetical equivalent of
the plane (a space of two dimensions). All this is familiar.

1.2. The space of n dimensions. More generally, we
consider complexes of n real numbers,
P=(xy, %y, - . - &) =(x;) 1=<i<n, . (L2.1)

where n is a fixed positive integer. These complexes are
B 3



4 VOLUME AND INTEGRAL §1.2

ordered : that is, P =(z;) and Q= (y;) are the same com-
plex if, and only if, z; =y; for all 7. Thus, when n =2, the
two complexes (1, 2) and (2, 1) are different.

We use geometrical language and call each complex P
a point in the space of n dimensions ; the numbers z; are the
co-ordinates of P. It should be noted that these are mere
names so far, at least when »>3.1 We shall have to attach
some ‘ geometrical >’ significance to them : the analogy
with the true geometrical cases n< 3 will serve as a guide.

Thus the obvious definition of the distance between two
points P = (z;) and @ = (y;) will be

PQ=QP=[(@—y)*+ (@ —95)* +. . . (ma—ya)?]t . (1.2.2)

We shall then have, for any three points P, @, R, the triangle

relation
PQ<PR +RQ; " . . (1.2.3)

that is, one side of a ““ triangle > is at most equal to the sum
of the two other sides.

The proof is elementary. We use the inequality
(a-b)*<a®+b2+2| ab |
and Cauchy’s inequality

n 2 n n
(zaib,.) <Ta2.3¥b: . . . (L2.4)
1 1 1

First, if R is the origin 0= (0, 0, . . . 0), then
PQ*=3%(w; -y,)°< T+ Sy + 23| zy; |

< Sz 2+ Tyt +2(Iw? . Tyt

=[(Zz )+ (Zy2)*=[PO + 0Q]~
In the general case, when R=(z;), consider the points
P’'=(x;-2;) and Q"= (y;-z,). Clearly, PQ=P’Q’, PR=P’0, and
RQ=0Q’, so that the general case is reduced to the previous one.

1.3. Sets. Any prescription of points P in a given space
of » dimensions defines a set (of points) in this space. We

t When n=4, a complex (z, y, 2, t) can be interpreted as an
‘“ event ”’, that is as a point (z, y, 2) at the time .
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§1.3 SETS OF POINTS 5

denote a set, usually, by £ f; and we shall often write
P £ E for “P belongs to £ .

The most comprehensive set is the given space itself.
We denote it by E, or by E,, if we wish to place in evidence
the number of dimensions. Thus E, is the set of all real
numbers # (the line), E, is the set of all ordered pairs
(z, y) (the plane), and E, is the set of all ordered triplets
(z, y, z) of real numbers (the  ordinary ” space).

The following simple sets will frequently occur.

If C is a fixed point and p is a given positive number,
then the set of all points P in E, for which PC'<p is called
an open sphere, of centre C' and radius p. It is denoted by
K,(C), or simply by K.} Thus, if =1, alinear ““sphere”
is an open interval of centre C and length 2p; if n=2, a
“ gphere ” is a circle. In these cases we shall, of course,
retain the usual words. The set of points for which PC'<p
is called a closed sphere.

A closed interval I ={a;, b,y is defined as the set of all
points P = (z;) for which

a,<x;<b;, 1<i<n.. . . (1.3.1)
Thus, if n=2, a closed interval is a rectangle; if n=3,
it is a cuboid. Note that the sides, or edges, are, by
definition, parallel to the co-ordinate axes. In these cases
we shall retain the usual words.

The edges of an interval I (more precisely, the lengths
of the edges) are the numbers b; —a; ; and the volume of 1
is defined as

1I|=1";1(b,.-a,.). ... (139

If all edges are equal we speak of a cube (or a square, if
n=2). We allow some, or all, edges to be zero: in the
extreme case, an interval may reduce to a point. In this
chapter, however, the edges will usually be positive.

An open interval, denoted by (I)=(a;, b;), is the set of

+ E indicates the French word ensemble; we reserve S for
another use.
1 K indicates the German word Kugel.



6 VOLUME AND INTEGRAL §1.4

all points for which a;<;<b,. Its edges and volume are
defined as above. The point (}(a; +b,)) is called the centre
of the interval I, or (I).

A set F is said to be finite if it contains only a finite
number of points. It will be convenient to admit as finite
also a ‘““set ”” which contains 7o point. This set is called
the null set (or empty set) and is denoted by O. A non-finite
set is said to be infinite.

1.4. Subsets. We consider, throughout this book, a
given space E=E,,.

A set E, is said to be a subset of the set EB,, if every
point of B, also belongs to E,: P ¢ E, implies P £ E,. We
then say that E, is contained in E,, or that E, contains E,,
and write this as

’ E,cE, or E,oE,. . . (141)

Clearly, this relation is transitive : if E,cE,and E,c E,,
then B, c E;,. Every set is a subset of itself: E c E.

If P B, then {P} c E where {P} is the set consisting of
the point P only.

Clearly, E 5 E whatever Emay be. At the other extreme
we regard the null set as a subset of every set : O c E.

If B, c E, but E,+E,, then E, is called a proper subset
of E,. Thus O is a proper subset of any non-empty set.
An open sphere is a proper subset of the corresponding
closed sphere ; and similarly for intervals.

The set of all points (z, ¥, ¢), where ¢ is fixed, is a two-
dimensional subset (a plane) of E,; the set of all points
(@, y, c), where a and ¢ are fixed, represents a line in E,.
Similarly, fixing £ (<n) of the co-ordinates, we obtain a
(n — k)-dimensional subspace of E,. More generally, we can
define such a subspace by k independent linear equations
between the co-ordinates.

A set E is called bounded if there is a closed interval I
such that # cI. Any finite set, interval, or sphere is

bounded. Neither the space itself nor any of its subspaces
is bounded.



