ulké]

EXPERT SYSTEMS:
THE USER INTERFACE

~ edited by
James A. Hendler

Tf‘t}f%
H A5 _) y
(2) 4’)’324\(}5/% 8962826

EXPERT SYSTEMS: THE USER
INTERFACE

edited by

James A. Hendler
University of Maryland

IWWWWII/IIIIIIIIIIIIII

E8962826

@ ABLEX PUBLISHING CORPORATION
Norwood, New Jersey 07648

Copyright © 1988 by Ablex Publishing Corporation.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, me-
chanical, photocopying, microfilming, recording, or other wise, without per-
mission of the publisher.

Printed in the United States of America.

Library of Congress Cataloging-in-Publication Data
Expert systems.

(Human/computer interaction)

Bibliography: p.

Includes index.

1. Expert systems (Computer science) I. Hendler,
James A. II. Series: Human/computer interaction
(Norwood, N.J.)

QA76.76.E95E985 1987 006.3'3 87-18675
ISBN 0-89391-429-0

Ablex Publishing Corporation
355 Chestnut St.
Norwood, NJ 07648

EXPERT SYSTEMS: THE USER
INTERFACE

HUMAN/COMPUTER INTERACTION
A Series of Monographs, Edited Volumes, and Texts
SERIES EDITOR
BEN SHNEIDERMAN

Directions in Human/Computer Interaction
Edited by Albert Badre and Ben Shneiderman

Online Communities:
A Case Study of the Office of the Future
Starr Roxanne Hiltz

Human Factors In Computer Systems
Edited by John Thomas and Michael Schneider

Human Factors and Interactive Computer Systems
Edited by Yannis Vassiliou

Advances in Human/Computer Interaction Vol. 1
Edited by H. Rex Hartson

Empirical Studies of Programmers
Edited by Elliot Soloway and Sitharama Iyengar

Human-Computer Interface Design Guidelines
C. Marlin Brown

In preparation:

Expert Systems: The User Interface
Edited by James A. Hendler

Human Factors in Management Information Systems
Edited by Jane Carey

Empirical Studies of Programmers Vol. 2
Edited by Gary Olson, Elliot Soloway and Sylvia Sheppard

Advances in Human Computer Interaction Vol. 2
Edited by H. Rex Hartson and Deborah Hix

Online Helps: Design and Implementation
Greg Kearsley

Socializing the Human/Computer Environment
Jerry Vaske and Charles Grantham

Series Editor’s Preface

Ben Shneiderman

The Controversy

Enthusiasts see expert systems as a replacement for scarce human ex-
perts, the embodiment of a human expert’s wisdom, a repository for the
collective knowledge of many experts, or a tool to enable novices to
behave like experts. Critics complain that the promises are more attrac-
tive than the reality and that the term ‘“‘expert systems” is seductive
and possibly misleading.

Some prefer the term “knowledge-based”” systems to convey the idea
that knowledge is being stored on the computer, not just data or al-
gorithms. A still less flamboyant term—‘““rule-based” systems describes
the programming language style of using multiple, nonsequential IF-
THEN groupings. Many hours of debate have been wasted in discussing
whether an expert system can be written without a rule-based language.

In spite of the confusion over terminology, it is clear that something
new has emerged. The promise of advanced systems that support less-
structured decision-making situations has engaged the energy of thou-
sands of researchers, product developers, and commerical designers.
Hardware manufacturers have come forward with high-speed ma-
chines to support rule-based programming and large screen displays to
provide visibility for the complex world of action in many of the
applications.

But while there has been tremendous progress in programming
methods and hardware, there seems to be little emphasis on the user
interface. Designers of early expert systems postulated that a natural
language front end would handle all the problems and that a human-
like dialogue would be most effective. Of course, these naive visions
generated serious problems with the implementation and the usability
of practical systems. Natural language front ends that look good during

vii

viii SHNEIDERMAN

demonstrations are not sufficiently robust to handle the diversity of
input in realistic applications. Human-like dialogue in which the com-
puter prompts the user for answers to a long series of questions are too
rigid, tedious, and machine-centered.

Real users of expert systems are not data entry clerks. They have a
large body of knowledge about the problem, the computer, and the real
world. In many cases they are willing to learn some compact notation
to speed problem entry, but they also want more flebility in the se-
quence of actions. They also want to understand what is happening and
be in control. Therefore they are often unsatisfied with the generated
explanations of why each rule was invoked, but prefer to be in charge
along the way, directing the machine and developing an effective cog-
nitive model of the task domain that reduces their dependency on the
expert system.

Turning Toward a Scientific Approach

These unsupported conjectures may not apply to many situations and
users, but are meant as an alternate view of the users. Rather than waste
further hours of debate, it seems possible to develop a more scientific
approach and study explicitly the user interface for expert systems.
Instead of vague arguments about the user friendliness of competing
approaches, we can turn to controlled psychologically oriented experi-
ments or carefully planned observational and thinking aloud studies of
user behavior. Separate measurements are made of the learning time,
speed of performance on benchmark tasks, rates and distribution of
errors, and retention over time for a variety of user communities. In
addition, subjective satisfaction scales and informal comments can pro-
vide insight to the problems users experience.

The benefits of these approaches in advanced basic research and in
commercial environments have been amply demonstrated in other ap-
plications. Usability laboratories and thorough user interface testing
have become part of the landscape for successful software companies.

Expert Systems Programmer Interfaces

Programmers, knowledge engineers, and maintainers or expert systems
also need effective user interfaces. When there are 1,000 rules of 20
lines each and 80 are invoked to produce a result, tracing and debug-
ging become fighteningly difficult. Successful tools must support rapid
and comprehensible browsing of rules and facts, graphic display of

SERIES EDITOR’S PREFACE ix

relationships, convenient dynamic execution, meaningful documenta-
tion facilities, and elaborate version control. Still more powerful fea-
tures are needed when multiple graphics displays or direct manipula-
tion programming is involved.

Creating a Community

With explicit attention to the user interface the advantages of rule-
based programming will be more easily and successfully applied in
many situations. To foster more attention to the user and programmer
interface, we began to organize a workshop. We wanted to bring to-
gether the small number of people who had already identified the prob-
lems and were working on solutions. In early 1986, about 20 people
were contacted to present their work during 2-day in June 1986. The
organizing committee included James Hendler, Dana Nau, James Reg-
gia, and Roland Simon.

With support from the University of Maryland Institute for Ad-
vanced Computer Studies (UMIACS) (Larry Davis, acting director) and
the Department of Computer Science (Victor Basili, chair) we were able
to invite the people we wanted and play host to a stimulating work-
shop. Johanna Weinstein did a superb job with the administrative is-
sues, resulting in a smooth running workshop.

The Workshop

The thoughtful presentations, lively discussions, and joy at discovering
colleagues with shared interests made for a successful workshop. Many
of the chapters in this volume were prepared especially for the work-
shop. James Hendler organized the reviewing and editing process and
diligently pursued the researchers who were working on key problems
but could not attend the workshop. The reviewers made numerous
suggestions that strengthened the individual efforts and the co-
hesiveness of the collection. We hope that the appearance of this book
will stimulate further research in this area.

The Future

Our workshop was just a beginning. We were excited with the enthusi-
astic response of participants and the numerous intriguing directions
for research. I believe that greater attention to the user interface will be

X SHNEIDERMAN

extremely beneficial to the success of expert systems. The work will be
challenging, but the payoff substantial. I was very satisfied to see that
researchers have come to recognize the central role of user interface
design.

The user interface is not the paint put on at the end of the project, but
the steel frame on which to hang the details. Designers who are con-
cerned about good user interfaces are finding the ideas to build quality
into their systems. I believe that we are getting closer to the goal of
building interactive systems that are comprehensible, predictable, safe,
and attractive. I think users of well-designed systems experience a
higher level of competence, mastery, clarity, potency, and satisfaction.

Preface

James Hendler

As Ben has mentioned in his Preface, this book was originally to be a
presentation of the set of papers given at a workshop held at the Univer-
sity of Maryland entitled ‘“Expert systems: The user interface.” I was
asked to edit because of my interest in the area and my involvement in
the workshop. As time progressed, however, it became clear that in-
terest in the book was so high that just presenting a set of workshop
papers wouldn’t be enough. New papers were sought to try to present a
balanced coverage of the field of interface design for expert systems.
We felt it important to represent as many of the different people work-
ing in the expert systems field as possible. OQur goal was to present
papers from academics and those working in industry; from diagnosis,
classification, and domain modeling; and from the perspective of
knowledge engineer, expert, and end user. Thus, I tried my best to
provide a broad coverage of the field with no particular viewpoint
emphasized.

I wasn’t aware how successful this attempt was until I tried to
organize the gathered chapters into subsections for this volume. There
were so many different overlaps that almost any grouping of the papers
provided some sort of classification. The order these papers now ap-
pear corresponds in some rough way to a “spectrum”’ of the field, with
“practice” at one end and “‘theory” at the other. Unfortunately for this
ordering, (although fortunately for the reader), this was an artificial
distinction at best. Papers on theory cite specific systems and papers on
developed systems aim to explain the theory behind their operation.

Each of the authors contributing to this volume was asked not only
to contribute a chapter, but also to read and review at least two other
papers. The production schedule was frantic and authors were asked to
produce these reviews, read their own reviews, and update their papers
in a timely manner. Finding time in busy schedules to perform these

Xi

Xii HENDLER

tasks was a monumental effort for each of the authors, and their labors
are most appreciated. Several outside reviewers were also used. In
particular, Kate Erhlich of Symbolics Inc., Lorin Wilde of Lisp Ma-
chines Inc., and Joy Bush of the University of Maryland took the time to
read several articles each and produce useful reviews for me and the
authors. Their efforts, too, are greatly appreciated.

The workshop at which several of these papers were first presented
was jointly sponsored by the University of Maryland Institute for Ad-
vanced Computer Studies (UMIACS) and the University of Maryland
Computer Science Department. I am grateful to the help of those organ-
izing the conference technically: James Reggia, Dana Nau, Ben
Shneiderman, and Roland Simon, and administratively: Larry Davis
(acting director of UMIACS), Victor Basili (chairman of the Computer
Science Department). A special thanks to Johanna Weinstein who did
much of the administrative work.

Finally, a great many people expressed interest in contributing arti-
cles to this book. It was a difficult task to make these decisions, and I
must apologize again to all those doing outstanding work whose
articles do not appear here. Thanks for your graciousness and
understanding.

Jim Hendler
University of Maryland

Contents

Series Editor’s Preface vii
Preface xi

Introduction: Designing Interfaces for Expert Systems 1
James Hendler and Clayton Lewis

Graphical Specification of Procedural Knowledge for an Expert
System 15
Mark A. Musen, Lawrence M. Fagan, and Edward H. Shortliffe

Expert System Development: Letting the Domain Specialist
Directly Author Knowledge Bases 37
Stanley Tuhrim, James A. Reggia, and Marianne Floor

DARN: Toward a Community Memory for Diagnosis and Repair
Tasks 57
Sanjay Mittal, Daniel G. Bobrow, and Johan de Kleer

Hierarchical Knowledge Clustering: A Way to Represent and
Use Problem-solving Knowledge 81
Dana Nau and Michael Gray

Direct Manipulation User Interfaces for Expert Systems 99
James Baroff, Roland Simon, Francie Gilman, and Ben
Shneiderman

Development Tools for Rule-based Systems 127
Stephen Fickas

Using a Knowledge Base to Drive an Expert System Interface
with a Natural Language Component 153
Philip]J. Hayes

A UIMS for Building Metaphoric User Interfaces 183
Ross Faneuf and Steven Kirk

vi

10.

11.

12.

13.

CONTENTS

Explanation: The Role of Control Strategies and Deep
Models 219
B. Chandrasekaran, Michael C. Tanner, and John R. Josephson

Facilitating Change in Rule-based Systems 249
Robert J. K. Jacob and Judith N. Froscher

The Evolution of Interface Requirements for Expert
Systems 285
Marilyn Stelzner and Michael D. Williams

Cognitive Impacts of the User Interface 307
Paul E. Lehner and Mary M. Kralj

Author Index 319
Subject Index 323

ONE

Introduction: Designing Interfaces for
Expert Systems

James Hendler

Department of Computer Science
University of Maryland

Clayton Lewis

Department of Computer Science
University of Colorado

Over the past decade the field of expert systems has grown from a few
small projects to a major field of both academic and industrial endeav-
or. The systems have gone from academic laboratories, through indus-
trial development, and are now reaching a substantial user population.
In other areas of computer science such explosive growth has often led
to systems which are difficult to learn and painful to use. Will expert
systems suffer this same fate? In this chapter we compare expert sys-
tems with more traditional computer systems and discuss the special
needs of this new field. We do this by presenting several short ques-
tions, and the corresponding long answers.

Question 1:

Does Fantastic New AI Technology Avoid Traditional System
Usability Issues?

When a new technology makes the transition from laboratory to indus-
try, there is a tendency to treat it as if it has a magical nature. Since it

1

2 HENDLER AND LEWIS

solves many previously unsolvable problems one begins to believe it
solves all of them. Expert systems are no exception to this. The seeming
natural language interfaces of many early systems, the windowing and
animation facilities of some of the newer systems, the built-in help
facilities of present-day Lisp Machines and the like appear to be the
necessary tools to cause user interaction problems to all but disappear.
Would that it were so.

Unfortunately, interface design is more complicated than just put-
ting up the windows on the screen. The designer must consider many
aspects of computer usage ranging from cognitive models of the users’
thought processes to the ergonomic issues of body motions and com-
fort. The designer must concentrate on many aspects of usability, in-
cluding a focus on users and their tasks, getting empirical evidence
about effectiveness, and stressing iteration between designers, imple-
menters, and users (Gould & Lewis, 1985).

Furthermore, far from alleviating the design burden, expert systems
bring up new design issues which must be addressed. Developing an
expert system usually contains three separate, but highly interacting,
components: knowledge capture, programming and debugging the sys-
tem, and, finally, placing the system before an active user community.
Thus, the interface designer must take new factors into consideration in
the design of tools for making these stages more efficient and for the
development of systems which can be used by the various personnel
involved in this process. The designer must now consider:

1. The issues involved in providing tools for the different personnel
involved in each of these stages. The designer is forced to examine
who is involved at each stage. What are their particular needs? How
are these needs best addressed in the design of the system?

2. The special needs of expert system users. The user community for
expert systems is often different from those using editors, operating
systems, and other traditional systems. What are the special needs
of these professional users who, despite being computer novices,
are often experts in their own field of endeavor?

3. The efficacy of these interfaces. The design process requires getting
empirical evidence about the effectiveness of the tools. The design-
er must therefore consider how to evaluate the interfaces designed
for expert systems. How do we demonstrate that these systems are
beneficial to the users? How do we present a rule base such that the
eventual user is able to test it.

In short, instead of avoiding the design issues for standard inter-
faces, expert systems appear to need all these considerations, plus
more. This leads us to our next question:

INTRODUCTION: DESIGNING INTERFACES FOR EXPERT SYSTEMS 3

Question 2:

Are Expert Systems Different From More Traditional Technologies
in Their Interface Needs?

Along with the new design issues listed above, expert systems create a
different set of demands on the interface. An expert system, unlike a
traditional computer program, is not just a tool that implements a pro-
cess, but rather it is a representation of that process. Further, many of
these processes correspond to judgments that can have critical real
world consequences. The user interface must often present not only
conclusions, but an explication of the processes by which those conclu-
sions are reached.

Compare the behavior of an expert system to that of a more tradi-
tional software system, say a compiler. The compiler user cares about
ease of input, clarity, and timeliness of error reports, etc. but is willing
to trust the compiler designer’s decisions as to optimizations in the
code, translations, etc. It is a rare user who demands that the interface
show the internal workings of the compiler or produce a represention
of the algorithms used.

This is not the case, however, for the typical expert system. These
systems are often not merely used as a tool for performing a task, but
rather as a support tool for performing some decision-making process.
Thus, the interface designer must be able to provide support for a
knowledge engineer who is trying to enter and debug the representa-
tion of the process, and also support, through the same or a different
interface, the user who wishes to know how some decision is reached.
Issues involving explanation of the reasoning process and display of
this reasoning become paramount in the acceptance of the system by
users and thus may become paramount to the designer. This implies
that the expert systems interface designer has a difficult task on his/her
hands. Not only must the designer concentrate on the issues that lead to
acceptance in traditional interfaces (which are often overlooked in the
design of expert systems), but he/she must also concentrate on these
new design areas of import in the system’s acceptance.

Question 3:

What Are the Traditional Design Areas Which Are Often
Overlooked in the Design of Expert Systems?

As mentioned above, one of the key features an expert system designer
must worry about is the acceptance of the system by the intended users.
Most of the thrust in many Al systems today is to get the knowledge in

4 HENDLER AND LEWIS

and make it work. The interfaces may be designed in advance, as op-
posed to allowing them to follow from the data, but often the end user
of the system is not considered. The system, a perfectly usable one with
a well-designed interface, is sent out to a customer, where it sits on the
shelf and is never used.

There are many reasons this may occur. One reason may be simply
the natural skepticism about artificial intelligence that is still seen in
many fields and endeavors. These users need much convincing that the
underlying technology is sound and that the knowledge contained is
correct. Further, many of these users also insist that the knowledge be
changeable by themselves. They are not content with someone else’s
judgments being promoted as “‘the answer.” They want to make sure
they will agree. Typical users in this group would be doctors, lawyers,
physicists, managers, and others who are traditionally viewed as ex-
perts in their own field.

These users make many demands on the designer of an expert sys-
tem interface. The system must be able to explain its behavior and must
be able to be updated, using some interaction technique which is natu-
ral to these experts. Further, these experts will demand to see data that
will convince them of the efficacy of the system. The issue of exactly
what needs evaluation and how such evaluation is to be performed is
beyond the scope of “interface design,” and yet, the interface designer
must be sensitive to such issues—the product developer, or the users
themselves, will make demands on the interface during this evaluation
process.

Further, there is another, probably larger, group of users for whom
expert systems are being designed which is not as subject to this “Al
fear.” These users, often not the experts themselves, but “consumers of
expertise,” usually will trust the results of the system. Yet they too, in
many current situations, are refusing to use the new technologies.

In these cases, we believe, it is often the interface, and thus, the
interface designer, which is to blame. If the interface doesn’t take into
account the global needs of the user, that is those beyond the use of the
system itself, the program will not be used. Unfortunately, it is these
considerations which are often ignored during the design process.

One of the key factors ignored by many designers is the users’ en-
vironment. The expert system must be designed to match the office or
workplace of the system’s users. The designer must take into account
the users’ access to the system, their time to use it, and the com-
patibility of the expert system with other interfaces the users have been
exposed to. Too often, these factors are not taken into account.

Take, for example, a user with some form of PC on his/her desk. If an
expert system is imported which must run on a Lisp Machine located

